• Title/Summary/Keyword: Fading Memory Algorithm

Search Result 7, Processing Time 0.021 seconds

Time-Varying Signal Parameter Estimation by Variable Fading Memory Kalman Filtering

  • Lee, Sang-Wook;Lim, Jun-Seok;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3E
    • /
    • pp.47-52
    • /
    • 1998
  • This paper prolposes a VFM (Variable Fading Memory)Kalman filtering and applies it to the parameter estimation for time-varying signals. By adaptively calculating the fading memory, the proposed algorithm does not require any predetermined fading memory when estimating the time-varying signal parameter. Moreover, the proposed algorithm has faster convergence speed than fixed fading memory one in case the signal contains an impulsive outlier. The performance of parameter estimation for time-varying signal is evaluated by computer simulation for two cases, one of which is the chirp signal whose frequency varies linearly with time and the other is the chip signal with an impulsive outlier. The experimental results show that the VFM Kalman filtering estimates the parameter of the chirp signal more rapidly than the fixed fading memory one in the region of an outlier.

  • PDF

A Study on Optimization of Fourth-Order Fading Memory Filter under the Highly Dynamic Motion of Both Own Ship and Target

  • Pan, Bao-Feng;Jeong, Tae-Gweon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.145-147
    • /
    • 2017
  • Tracking filter plays a key role in accurate estimation and prediction of maneuvering vessel's dynamics. The third-order ${\alpha}-{\beta}-{\gamma}$ filter is one of the special cases of the general solution provided by the Kalman filter. Fading memory algorithm performs a better performance in numerous of ${\alpha}-{\beta}-{\gamma}$ filter algorithms. This study aims to optimize the fourth-order fading memory algorithm ${\alpha}-{\beta}-{\gamma}-{\eta}$ filter, which is extended form ${\alpha}-{\beta}-{\gamma}$ filter, to get much more accurate position of high dynamic target on the condition that the own ship is also high dynamic.

  • PDF

Range Estimation Algorithm Based on Triangulation Using Angle Measurements (각도 측정치를 이용한 삼각 측량법 기반 거리 추정 알고리즘)

  • Kang, Tae Young;Moon, Kyujin;Lee, Yong-Seon;Choi, Sung-Ho;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.277-284
    • /
    • 2020
  • The remaining range between missile and target can be used to calculate the guidance command as well as to determine the explosion time of the warhead. Since the range, however, is not directly measured by on-board sensors of the missile, it is usually estimated by filter-based techniques using angle-only measurements. Conventional filter-based techniques are complex and require huge computation. In this paper, we propose a range estimation algorithm based on the geometrical triangulation principle for two points of missiles and a target. The proposed algorithm has a simple structure but the accuracy is largely dependent on the measurement errors. To improve the accuracy of estimation, Digital Fading Memory Filter (DFMF) is applied. The performance of the proposed algorithm is analyzed through numerical simulations.

A burst-error-correcting decoding scheme of multiple trellis-coded $\pi$/4 shift QPSK for mobile communication channels (이동 통신 채널에서 다중 트렐리스 부호화된 $\pi$/4 shift QPSK의 연집 에러 정정 복호 방식)

  • 이정규;송왕철;홍대식;강창언
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.4
    • /
    • pp.24-31
    • /
    • 1995
  • In this paper, the dual-mode burst-error-correcting decoding algorithm is adapted to the multiple trellis-coded .pi./4 shift QPSK in order to achieve the improvement of bit error rate (BER) performance over fading channels. The dual-mode adaptive decoder which combines maximum likelihood decoding with a burst detection scheme usually operates as a Viterbi decoder and switches to time diversity error recovery whenever an uncorrectable error pattern is identified. Rayleigh fading channels and Rician fading channels having the Rician parameter K=5dB are used in computer simulation, and the simulation results are compared with those of interleaving techniques. It is shown that under the constraint of the fixed overall memory quantity, the dual-mode adaptive decoding scheme gains an advantage in the BER performance with respect to interleaving strategies.

  • PDF

An Efficient CPM Adaptive Decoding Technique over the Burst Error Channel (연집 오류 채널에 효율적인 CPM 적응복호 방식)

  • 정종문;김대중;정호영;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1548-1557
    • /
    • 1994
  • In this paper, the dual mode error correcting adaptive decoding algorithm which is adapted to the continuous phase frequency shift keying(CPFSK) modulation is presented as a technique for overcoming the distortion that reveals from the Rayleigh fading channel. The dual mode adaptive decoder nominally operates as a Viterbi decoder and switches to the burst error correcting mode, whenever the decoder detects an uncorrectable burst error pattern. Under the fading channel environment and when the usable memory quantity is restricted, the dual mode adaptive decoding algorithm shows an advantage in the BER performance over the interleaving technique, and also obtains the merit of not needing the large time delay that the interleaving technique requires. The experimental results from the computer simulation demonstrate the performance of the algorithm and verify the theoretical results.

  • PDF

A Simple Symbol Timing Detection Algorithm for OFDM Systems (OFDM 시스템의 효율적인 심볼 타이밍 검출 알고리즘)

  • Kim, Dong-Kyu;Choi, Hyung-Jin
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.305-313
    • /
    • 1999
  • To demodulate the received OFDM signal, symbol timing detection which finds symbol start in the received sample stream is required in the system initialization. In this paper, we analyze the effect of symbol timing offset and propose a new symbol timing detection algorithm, which is using the guard interval. The proposed algorithm requires low computational process and small memory size, and dose not be affected by frequency offset and phase offset. In addition, We apply this algorithm to European digital TV broadcasting model based on OFDM to evaluate the performance in AWGN and multipath fading channel by the computer simulation.

  • PDF

Iterative LBG Clustering for SIMO Channel Identification

  • Daneshgaran, Fred;Laddomada, Massimiliano
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.157-166
    • /
    • 2003
  • This paper deals with the problem of channel identification for Single Input Multiple Output (SIMO) slow fading channels using clustering algorithms. Due to the intrinsic memory of the discrete-time model of the channel, over short observation periods, the received data vectors of the SIMO model are spread in clusters because of the AWGN noise. Each cluster is practically centered around the ideal channel output labels without noise and the noisy received vectors are distributed according to a multivariate Gaussian distribution. Starting from the Markov SIMO channel model, simultaneous maximum ikelihood estimation of the input vector and the channel coefficients reduce to one of obtaining the values of this pair that minimizes the sum of the Euclidean norms between the received and the estimated output vectors. Viterbi algorithm can be used for this purpose provided the trellis diagram of the Markov model can be labeled with the noiseless channel outputs. The problem of identification of the ideal channel outputs, which is the focus of this paper, is then equivalent to designing a Vector Quantizer (VQ) from a training set corresponding to the observed noisy channel outputs. The Linde-Buzo-Gray (LBG)-type clustering algorithms [1] could be used to obtain the noiseless channel output labels from the noisy received vectors. One problem with the use of such algorithms for blind time-varying channel identification is the codebook initialization. This paper looks at two critical issues with regards to the use of VQ for channel identification. The first has to deal with the applicability of this technique in general; we present theoretical results for the conditions under which the technique may be applicable. The second aims at overcoming the codebook initialization problem by proposing a novel approach which attempts to make the first phase of the channel estimation faster than the classical codebook initialization methods. Sample simulation results are provided confirming the effectiveness of the proposed initialization technique.