• Title/Summary/Keyword: Factory

Search Result 3,070, Processing Time 0.027 seconds

Mechanical Alignment of Hull Mounted Phased Array Radar on the Separated Mast (분리된 마스트에 설치되는 선체고정 위상 배열 레이더의 기계적 정렬)

  • Seo, Hyeong-Pil;Kim, Dae-Han;Kim, Joon-Woo;Lee, Kyung-Jin;Cho, Kyu-Lyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.465-473
    • /
    • 2019
  • This paper is meaningful as the first case where a 4 - sided hull-fixed phased array radar was installed on a mast separated from Korea and the alignment was verified. The mechanical alignment method was studied for accurately mounting two separate masts for naval ships and the 3D scanner for alignment. Hull-fixed phased array radar uses very high frequency, so the short wavelength can cause a phase difference of the device due to the small positional error. Since the array antenna is fixed with the hull, it has higher accuracy control than the rotary radar for 4 array surfaces. The study describes a method of checking the flatness of two radar masts manufactured at a factory, a method of aligning masts in a shipyard, and a method of aligning four array pad mounting surfaces. As a tool for this, a 3D laser scanner and a software-based method for comparing survey results with 3D CAD are used. This paper is meaningful as the first example of installing a four-sided hull-fixed phased array radar on a separate mast from a Korean naval ship and deriving a mechanical alignment method.

A Method for Prediction of Quality Defects in Manufacturing Using Natural Language Processing and Machine Learning (자연어 처리 및 기계학습을 활용한 제조업 현장의 품질 불량 예측 방법론)

  • Roh, Jeong-Min;Kim, Yongsung
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.52-62
    • /
    • 2021
  • Quality control is critical at manufacturing sites and is key to predicting the risk of quality defect before manufacturing. However, the reliability of manual quality control methods is affected by human and physical limitations because manufacturing processes vary across industries. These limitations become particularly obvious in domain areas with numerous manufacturing processes, such as the manufacture of major nuclear equipment. This study proposed a novel method for predicting the risk of quality defects by using natural language processing and machine learning. In this study, production data collected over 6 years at a factory that manufactures main equipment that is installed in nuclear power plants were used. In the preprocessing stage of text data, a mapping method was applied to the word dictionary so that domain knowledge could be appropriately reflected, and a hybrid algorithm, which combined n-gram, Term Frequency-Inverse Document Frequency, and Singular Value Decomposition, was constructed for sentence vectorization. Next, in the experiment to classify the risky processes resulting in poor quality, k-fold cross-validation was applied to categorize cases from Unigram to cumulative Trigram. Furthermore, for achieving objective experimental results, Naive Bayes and Support Vector Machine were used as classification algorithms and the maximum accuracy and F1-score of 0.7685 and 0.8641, respectively, were achieved. Thus, the proposed method is effective. The performance of the proposed method were compared and with votes of field engineers, and the results revealed that the proposed method outperformed field engineers. Thus, the method can be implemented for quality control at manufacturing sites.

Review of the Literature on Level of Biological Exposure and Trends in Possible and Probable Occupational Disease among Chromium Workers (크롬 직업병 유소견자와 요관찰자 추이 및 취급 근로자의 생물학적 노출수준 고찰)

  • Park, Sang-il;Kim, Nam-Soo;Hwangbo, Young;Kim, Hwa-Sung;Lee, Sung-Soo;Kim, Yong-Bae
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.3
    • /
    • pp.213-225
    • /
    • 2021
  • Objectives: This study identifies the trends in possible and probable occupational disease among chromium workers and reviews the literature on domestic and foreign chromium workers to review the industries, biological exposure levels, and major results. Methods: The results of the Ministry of Employment and Labor's special health-screening program for hazard agents among workers from 2009 to 2019 were used. Also, the industries, biological exposure levels, and major results on chromium workers were reviewed using PubMed and RISS. Results: The average annual proportion of both possible and probable occupational disease for chromium workers has recently increased. The average annual proportion of possible and probable occupational disease that can occur was high for both men and women in their 60s or older by age and 10 to 14 years by work duration. By industry, possible occupational disease showed high in manufacturing. In the literature review, many electroplating-related chromium-workers reported high levels of exposure to blood and urine chromium, as did dental technicians; tannery, tile factory or glass mill workers; cement workers; and sodium bichromate workers. Furthermore, a number of main findings in recent studies have reported that chromium exposure is related to genetic toxicity among workers. Conclusions: In this study, the average annual rate of both possible and probable occupational disease in domestic chromium workers is increasing, and a body of literature shows that chromium exposure is related to genetic toxicity and associated indicators among workers, which requires more systematic study.

A Study on the Design of Supervised and Unsupervised Learning Models for Fault and Anomaly Detection in Manufacturing Facilities (제조 설비 이상탐지를 위한 지도학습 및 비지도학습 모델 설계에 관한 연구)

  • Oh, Min-Ji;Choi, Eun-Seon;Roh, Kyung-Woo;Kim, Jae-Sung;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In the era of the 4th industrial revolution, smart factories have received great attention, where production and manufacturing technology and ICT converge. With the development of IoT technology and big data, automation of production systems has become possible. In the advanced manufacturing industry, production systems are subject to unscheduled performance degradation and downtime, and there is a demand to reduce safety risks by detecting and reparing potential errors as soon as possible. This study designs a model based on supervised and unsupervised learning for detecting anomalies. The accuracy of XGBoost, LightGBM, and CNN models was compared as a supervised learning analysis method. Through the evaluation index based on the confusion matrix, it was confirmed that LightGBM is most predictive (97%). In addition, as an unsupervised learning analysis method, MD, AE, and LSTM-AE models were constructed. Comparing three unsupervised learning analysis methods, the LSTM-AE model detected 75% of anomalies and showed the best performance. This study aims to contribute to the advancement of the smart factory by combining supervised and unsupervised learning techniques to accurately diagnose equipment failures and predict when abnormal situations occur, thereby laying the foundation for preemptive responses to abnormal situations. do.

A Study on the Meaning of School Space: Criticism and Alternatives (학교 공간에 관한 의미 탐색: 비판과 대안)

  • Kim, Dal-Hyo
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.26 no.4
    • /
    • pp.3-10
    • /
    • 2019
  • In school facilities, space is the basic framework. The structure and arrangement of space will provide the form and feel of school facilities. In order to become a high-quality school facility, it is necessary to focus on the educational, human and ecological aspects of the instructor and learner until the space is conceived, designed and completed. However, even when public education was introduced in the past, it did not become a school space considering this aspect. The school space, which focuses on efficiency and labor production, is a school space that reflects the characteristics of a factory-type school, which has been occupied by a large number until recently. Although efforts to improve the quality of school facilities have been attempted in recent years, there is also a need to pursue more active changes. Future-oriented and progressive school spaces include flexibility, connectivity, individualization, diversity(creativity). In other words, space should be flexible so that it can be used faithfully according to the educational situation, not the fixed and limited school space as in the past. In the future, the school space should be open and securely linked to the place where it is essential to complete community relations with the community. In addition, space should be flexible so that the school can meet the needs of each student as much as possible. And the school space should be transformed from the space design of the past fixed pattern to reflect the close relationship between spatial, psychological, physiological, and behavioral areas. When school space needs to shift away from the past and change in a new future-oriented direction, the remaining tasks should be presented with specific characteristics and content of the direction. And the function of the consignment should be handled by related research. Although the text of this study reveals the characteristics of future-oriented school space, more concrete and empirical research results should be presented by subsequent research at home and abroad. It is necessary to reduce trial and error in creating a future-oriented school space where both professors and learners can be satisfied by analyzing the common points and differences between the results of the study. In order to do this, it is necessary to make efforts to approach such research based on the participation of the subjects who teach and learn directly at the school site.

A Study on the Role of the College to Foster Student Entrepreneurship Contents - Focused on the case of Y College of Dept. Fashion Indestry (학생 창업콘텐츠 육성을 위한 전문대학교의 역할 - Y전문대학교 패션산업과 사례를 중심으로)

  • Lee, Ji-Yeon;Kim, Jang-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.697-706
    • /
    • 2021
  • The purpose of this study is to find out whether the many start-up support programs provided by a college can actually help students start a business, and to discuss what role colleges should have as facilitators of student entrepreneurship. To this end, a qualitative study was conducted with seven students who wished to start a business by utilizing start-up education and support programs provided by College Y. As a result of the study, the participants first mentioned parallel and administrative inefficiency in entrepreneurship and the entrepreneurship programs. Second, the implications for the role of colleges in fostering start-up content are systematic planning and guidance for start-up programs operated by the college, concise administrative procedures, mentoring in various start-up items, and securing a test market. It can be said that the concept of a common office in which students can work together is necessary. The study is significant in that it can help to establish a start-up support plan by suggesting what role colleges should play in relation to entrepreneurship, but its limitation is that its scope includes only one specific major.

Towards a Transportation Support System for Off-site Construction : Identifying Key Functions and Diagramming Functional Blocks (오프사이트건설(Off-site Construction) 운반 시스템을 위한 핵심기능 도출 및 시스템 기능 전개도 개발)

  • Lee, Gangho;Kim, Minguk;Lee, Chansik;Koo, Choongwan;Kim, Taewan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.2
    • /
    • pp.21-30
    • /
    • 2021
  • The existing construction industry is classified into industries with low productivity compared to other industries. In order to solve the decline in productivity in the construction industry, the world is focusing on off-site construction (OSC), which is about 40% more productive than existing construction methods. This high productivity is possible because the three stages of production, transport to the site, and site assembly are consistently maintained in a continuous flow. This study conducted a functional survey through literature review, preliminary field survey, questionnaire, and expert interview. The surveyed function were classified into five categories: convenience, flexibility, manageability, communication, and safety, and the functional characteristics of flexibility, manageability, and communication were high. Because of the change according to the construction progress, the production schedule of the factory, and the variety of transportation time required. Finally, A functional block diagram was developed based on the 15 functions corresponding with an average score of 4 or more in the surveyed function score result. If the OSC transport system is established through this study, It can contribute to a successful construction OSC project and increase productivity.

Determination of Optimal Section for Corrugated Steel Plates (파형강판의 최적단면 결정)

  • Na, Ho-Sung;Choi, Dong-Ho;Yoo, Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.5-12
    • /
    • 2011
  • In this paper, after studying structural performance for the representative corrugated steel plate used in Korea, we proposed the optimum shape for section of corrugated steel plate considering a width of steel plates that can be produced currently in the factory. Using AISI(1986) in examination for the performance of the corrugated steel plate, we determined the mechanical limit of the optimum sections considering shear force and bending moment of corrugated steel plate and also determined the geometric limit of them considering formability, shapes and ratio between width of steel plate before forming and that after forming. As a result of examination for performance of steel plate applying algorithm for searching optimal sections algorithm developed in this study to the existing representative corrugated steel plate, allowable force and moment of inertia indicated the maximum values at bending radius 76mm and internal bending angle $50^{\circ}$. And as an application result of the optimum design system that used SS490 with 1,550mm of width and 4,700mm of length considering current production situation in Korea, we developed the new section with more than 2 times of structural performance comparing with existing corrugated steel plate.

Heavy Metal Contamination of Soil by Wash Water of Ready Mixed Concrete (레미콘 세척수에 의한 토양의 중금속 오염)

  • Oh, Se-Wook;Lee, Bong-Jik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.51-57
    • /
    • 2011
  • Generally, ready-mixed concrete(RMC) gets hardened by time, so the remaining concrete in the drum should be cleaned. But if the RMC waste water generated from this is discharged to soil without any treatment, the strong alkaline elements and heavy metals affect water and ecosystem pollution. Although about 10 to 15% of water used for cleaning in the RMC factory is discharged to soil or river, the concrete report of this affecting soil pollution has not been sufficient. Hence, in this study it was analyzed the extraction of cleaning water from RMC factories all over the country and heavy metal and pH components remaining in soil when this is penetrated to various soils having water permeability. The specimens used for the experiment are weathering soil and soils having different particle size, and it is made to be penetrated to those for 24 hours while fixed thickness of the layer is maintained. Cleaning water is divided into that before deposition treatment(sludge water) and that after deposition treatment(upper water) to be penetrated into soil, and according to the result of penetrating sludge water to soil, Cu and Mn, Fe, and Zn were found to be remained over 23 to 90%. However, it is analyzed that in upper water having deposition treatment, Cu and Mn remain as 60% or more only in weathering soil.

Research on The Implementation of Smart Factories through Bottleneck improvement on extrusion production sites using NFC (NFC를 활용한 압출생산현장의 Bottleneck 개선을 통한 스마트팩토리 구현 연구)

  • Lim, Dong-Jin;Kwon, Kyu-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.104-112
    • /
    • 2021
  • For extrusion processes in the process industry, the need to build smart factories is increasing. However, in most extrusion production sites, the production method is continuous, and because the properties of the data are undeed, it is difficult to process the data. In order to solve this problem, we present a methodology utilizing a near field communication (NFC) sensor rather than water-based data entry. To this end, a wireless network environment was built, and a data management method was designed. A non-contact NFC method was studied for the production performance-data input method, and an analysis method was implemented using the pivot function of the Excel program. As a result, data input using NFC was automated, obtaining a quantitative effect from reducing the operator's data processing time. In addition, using the input data, we present a case where a bottleneck is improved due to quality problems.