• 제목/요약/키워드: Factorial experiment

Search Result 511, Processing Time 0.028 seconds

Analysis of Ar Plasma Effects for Copper Nitride Passivation Formation via Design of Experiment (실험계획법을 통한 구리 질화물 패시베이션 형성을 위한 아르곤 플라즈마 영향 분석)

  • Park, Hae-Sung;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.51-57
    • /
    • 2019
  • To protect the Cu surface from oxidation in air, a two-step plasma process using Ar and $N_2$ gases was studied to form a copper nitride passivation as an anti-oxidant layer. The Ar plasma removes contaminants on the Cu surface and it activates the surface to facilitate the reaction of copper and nitrogen atoms in the next $N_2$ plasma process. This study investigated the effect of Ar plasma on the formation of copper nitride passivation on Cu surface during the two-step plasma process through the full factorial design of experiment (DOE) method. According to XPS analysis, when using low RF power and pressure in the Ar plasma process, the peak area of copper oxides decreased while the peak area of copper nitrides increased. The main effect of copper nitride formation in Ar plasma process was RF power, and there was little interaction between plasma process parameters.

Structural Design for 2kW Class Wind Turbine Blade by using Design of Experiment (실험계획법을 이용한 2kW급 풍력발전용 블레이드에 대한 구조설계)

  • Lee, Seung-Pyo;Kang, Ki-Weon;Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-33
    • /
    • 2011
  • In this paper, structural design for 2kW class composite blade is performed by using design of experiment(DOE). A full factorial design is applied to meet the design specifications at the manufacturing process. The analysis of variance(ANOVA) is made in order to determine the significance of effects in an analysis. Structural analysis by using of commercial software ABAQUS is performed to compute the displacement and safety factor of filament wound composite blade. The results show that the proposed method is suitable to analyze the factors at the design of wind turbine blade.

A Detection Matrix for $3N^n$ Search Design

  • Um, Jung-Koog
    • Journal of the Korean Statistical Society
    • /
    • v.12 no.2
    • /
    • pp.61-68
    • /
    • 1983
  • A parallel flats fraction for the $3^n$ factorial experiment is defined as the union of flats, ${t$\mid$At=C_i(mod 3)}, i=1,2,\cdot,f$, in EG(n,3) and is symbolically written as At=C where A is of rank r. The A matrix partitions the effects into u+1 alias sets where $u=(3^{n-r}-1)/2$. For each alias set the f flats produce an alias component permutation matrix (ACPM) with elements from $S_3$. In this paper, a detection vector of the ACPM was constructed for each combination of k or fewer two-factor interactions. Also the relationship between the detection vectors has been shown.

  • PDF

The Nonparametric Test for Detecting Main Effects for Three-Way ANOVA Models

  • Park, Young-Hun
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.3
    • /
    • pp.419-432
    • /
    • 1996
  • When interactions are not present in a three-way layout, the lim-iting null distribution of the F statistic for testing main effects when applied to the rank-score transformed data is the same as the limiting null distribution of the usual F statistic when applied to the normal data. The simulation results exhibit that the rank transform test is robust with respect to significance level and powerful for testing main effects in a three-way factorial experiment.

  • PDF

Sensitivity analysis of tunnel stability with a consideration of an excavation damaged zone (암반손상대를 고려한 터널 안정성 민감도 분석)

  • Kim, Jin-Soo;Kwon, Sanki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.91-104
    • /
    • 2014
  • An Excavation Damaged Zone (EDZ), in which rock properties are permanently changed due to blasting impact or stress redistribution, can influence the behavior and stability of structures. In this study, the mechanical stability of an underground opening was simulated by using FLAC, which is a two-dimensional modeling code, with a consideration of EDZ. A sensitivity analysis was also carried out with fractional factorial design. From the modeling, it was found that the behavior and the stability of an underground tunnel are strongly dependent on the existence of the EDZ. The sensitivity analysis showed that the key parameters affecting the factor of safety around the tunnel are in-situ stress ratio, depth, cohesion, reduction ratio, internal friction angle, and height and width of the tunnel. It is necessary to consider the EDZ, which can significantly affect mechanical stability in tunnel design.

Selection of Factors for Performance Optimization on Non-esterified Bio-diesel Fuel Using Fractional Factorial Design (부분요인배치법을 이용한 비에스테르화 바이오 디젤유의 성능 최적화를 위한 인자 선정)

  • Jung, Sukho;Koh, Daekwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.8-12
    • /
    • 2015
  • Non-esterified bio-diesel fuel saves cost by no esterified process and its performance was more similar to diesel oil than esterified bio-diesel fuel when the fuel blended 95% diesel oil and 5% it was used on diesel engine with electronic control system. A performance optimization is necessary for application of non-esterified bio-diesel fuel blended with diesel oil 95% on the latest diesel engine. In this study, test using fractional factorial design was accomplished at 25% and 50% partial load in order to evaluate influence of controllable 6 factors on responses such as specific fuel consumption, nitrogen oxides and coefficiency of variation of indicated mean effective pressure as basic experiment for performance optimization of this fuel. It is cleared that the injection timing and common rail pressure of 6 factors are mainly effective and its effect level is different according to load.

Effects of exogenous phytase and xylanase, individually or in combination, and pelleting on nutrient digestibility, available energy content of wheat and performance of growing pigs fed wheat-based diets

  • Yang, Y.Y.;Fan, Y.F.;Cao, Y.H.;Guo, P.P.;Dong, B.;Ma, Y. X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • Objective: Two experiments were conducted to determine the effects of adding exogenous phytase and xylanase, individually or in combination, as well as pelleting on nutrient digestibility, available energy content of wheat and the performance of growing pigs fed wheat-based diets. Methods: In Experiment 1, forty-eight barrows with an initial body weight of $35.9{\pm}0.6kg$ were randomly assigned to a $2{\times}4$ factorial experiment with the main effects being feed form (pellet vs meal) and enzyme supplementation (none, 10,000 U/kg phytase, 4,000 U/kg xylanase or 10,000 U/kg phytase plus 4,000 U/kg xylanase). The basal diet contained 97.8% wheat. Pigs were placed in metabolic cages for a 7-d adaptation period followed by a 5-d total collection of feces and urine. Nutrient digestibility and available energy content were determined. Experiment 2 was conducted to evaluate the effects of pelleting and enzymes on performance of wheat for growing pigs. In this experiment, 180 growing pigs ($35.2{\pm}9.0kg\;BW$) were allocated to 1 of 6 treatments according to a $2{\times}3$ factorial treatment arrangement with the main effects being feed form (meal vs pellet) and enzyme supplementation (0, 2,500 or 5,000 U/kg xylanase). Results: In Experiment 1, there were no interactions between feed form and enzyme supplementation. Pelleting reduced the digestibility of acid detergent fiber (ADF) by 6.4 percentage units (p<0.01), increased the digestibility of energy by 0.6 percentage units (p<0.05), and tended to improve the digestibility of crude protein by 0.5 percentage units (p = 0.07) compared with diets in mash form. The addition of phytase improved the digestibility of phosphorus (p<0.01) and calcium (p<0.01) by 6.9 and 7.6 percentage units respectively compared with control group. Adding xylanase tended to increase the digestibility of crude protein by 1.0 percentage units (p = 0.09) and increased the digestibility of neutral detergent fiber (NDF) (p<0.01) compared with control group. Supplementation of the xylanase-phytase combination improved the digestibility of phosphorus (p<0.01) but impaired NDF digestibility (p<0.05) compared with adding xylanase alone. In Experiment 2, adding xylanase increased average daily gain (p<0.01) and linearly improved the feed:gain ratio (p<0.01) compared with control group. Conclusion: Pelleting improved energy digestibility but decreased ADF digestibility. Adding xylanase increased crude protein digestibility and pig performance. Phytase increased the apparent total tract digestibility of phosphorus and calcium. The combination of phytase-xylanase supplementation impaired the effects of xylanase on NDF digestibility.

Modeling net energy requirements of 2 to 3-week-old Cherry Valley ducks

  • Yang, Ting;Yu, Lexiao;Wen, Min;Zhao, Hua;Chen, Xiaoling;Liu, Guangmang;Tian, Gang;Cai, Jingyi;Jia, Gang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1624-1632
    • /
    • 2020
  • Objective: A total of three hundred unsexed ducks were utilized to estimate net energy requirements of maintenance (NEm) and weight gain (NEg) for 2 to 3-week-old Cherry Valley ducks and to establish a model equation to predict NE requirements using the factorial method. Methods: To determine the apparent metabolizable energy (AME) of the diet, fifty 7-day-old ducks at approximately equal body weights (BWs) were randomly assigned into five groups that were fed at different levels (ad libitum, 85%, 75%, 65%, and 55% of ad libitum intake), and the endogenous acid-insoluble ash as indigestible marker. The two hundred and fifty 7-day-old ducks were used for a comparative slaughter experiment. At the beginning of the experiment, ten ducks were sacrificed to determine the initial body composition and energy content. The remaining ducks were randomly assigned into five groups (same as metabolic experiment). Ducks of the ad libitum group were slaughtered at 14 and 21-day-old. At the end of the experiment, two ducks were selected from each replicate and slaughtered to determine the body composition and energy content. Results: The results of the metabolizable experiment showed AME values of 13.43 to 13.77 MJ/kg for ducks at different feed intakes. The results of the comparative slaughter experiment showed the NEm value for 2 to 3-week-old Cherry Valley ducks was 549.54 kJ/kg of BW0.75/d, and the NEg value was 10.41 kJ/g. The deposition efficiency values of fat (Kf) and crude protein (Kp) were 0.96 and 0.60, respectively, and the values of efficiency of energy utilization (Kg) and maintenance efficiency (Km) were 0.75 and 0.88, respectively. Conclusion: The equation for the prediction of NE requirements for 2 to 3-week-old Cherry Valley ducks was the following: NE = 549.54 BW0.75+10.41 ΔW, where ΔW is the weight gain (g).

The Effects of Joining Factors on Strength of Al 6061 Alloy in FSW (Al 6061 합금의 마찰교반용접 시 접합변수가 강도에 미치는 영향)

  • Kang, Dae-Min;Lee, Dai-Yeal;Park, Kyoung-Do
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.86-91
    • /
    • 2017
  • Friction Stir Welding (FSW) is useful technique to join aluminum alloy with energy efficient and environment friendly. In this paper, the design of experiment with three-way factorial design was adopted for optimum conditions of welding variables in the FSW of Al 6061 alloy. Tools of shoulder diameter of 9, 12, 15 mm and pin length of 1.5 mm were used. Also the material's dimension for welding were $2{\times}100{\times}150mm$, and the tensile specimens were worked by water-jet technique. Welding variables were shoulder diameter, rotating speed and travel speed of tool. From the results of this work, the welding factor influenced on yield strength most was travel speed and the optimum condition for FSW was predicted as the shoulder diameter of 15 mm, welding speed of 500 mm/min and rotating speed of 2,000 rpm. Also the presumption range of yield strength at optimal condition of reliability 99% was estimated to $207.19{\pm}9.91MPa$.

A Numerical Study on the Improvement of Performance for the 2 Vane Pump Impeller (2 Vane 펌프 임펠러의 성능 개선에 관한 수치해석적 연구)

  • KIM, SUNG;MA, SANG-BUM;CHOI, YOUNG-SEOK;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.293-301
    • /
    • 2020
  • This paper describes a numerical study on the improvement of performance of the 2 vane pump impellers. The design of these impellers was optimized using a commercial computation fluid dynamics code and design of experiments. Geometric design variables were defined by the impeller blade angle distribution. The objective functions were defined as the total head, total efficiency and solid material size of the impellers. The importance of the geometric design variables was analyzed using 2k factorial designs. The interaction between the total head, total efficiency and solid material size, according to the impeller blade angle distribution, is discussed by analyzing the 2k factorial design results.