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ABSTRACT

A parallel flats fraction for the 3+ factorial experiment is defined as the unicn of flats, {t1At
=C: (mod 3)}, i=1,2,-,f, in EG(n,3) and is symbolically written as At=C where A is of
rank #. The A matrix partitions the effects into %1 alias sets where u=(3""—1)/2. For
each alias set the f flats produce an alias component permutation matrix (ACPM) with.
elements from S,. In this paper, a detection vector of the ACPM was constructed for each
combination of ¥ or fewer two-factor interactions. Also the relationship between the detection.

vectors has been shown.

1. Introduction

A parallel flats fraction is defined as T:i@l{_t;A_t:Q} where A is an 7 x# matrix
of rank 7. Each equation A¢=C; has 37" points and is called a flat. The f flats.
have no points in common, hence are termed parallel, with |7T|=f-3""". The
parallel flats fraction will be denoted symbolically by At=C, where C=(Cy, Cs, -, Co).

The choice of A determines the alias sets for the fraction. The estimate of an
effect of the jth alias set from the ith flat, denoted by S,-J-, is actually a linear
combination of all the factorial effects in that alias set. The form of the linear
combination depends on Q-, and is characterized by the permutation of levels of
each effect in the set to the identified effect S;;. These relations are given in the
alias component permutation matrix (ACPM). The elements of the ACPM are from
the permutation subgroup {e, (012), (021)}. The element of the ACPM for an effect
E in the jth alias set for the ith flat can be computed from a single linear function

of the elements of C;. The constriiction of a fraction is completed by the specification.

of A4 and C.
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2. Construction of a Detection Matrix

The general principle behind the detection procedure proposed here is the specifica-
tion of certain linear combinations of the observations whose configuration of zero
and nonzero values completely determines the non-negligible effects present,

We have defined S;; as the estimate of the effect identified with the jth alias set
for the ith flat where i=1,2, -, f and 7=1,2,-,u. These estimates are linear com-
binations of the 3"~ ohservations on the flat.

The linear combinations of interest are S‘,-;—S‘;/,-, 1#1'=1,2,++,f, j=1,2,+,u. The

expected value of S;;—S,s;, is equal to zero in the following three cases:

(1) There are no nonzero effects in the alias set other than the one used to represent
the set.

(2) There are nonzero effects in the alias set but their permutation relation to S; is
the same in flats 7 and 7,

(3) There are nonzero effects which have different permutation relations with S;
and just happen to combine to the same value in the two flats. The probability
of this is assumed zero.

Now we construct a (0,1) detection matrix K. The columns of K represent the
differences (i.e., linear combinations) between the ith flat and the i’ flat for each
ACPM P;, j=1,2,---, u. Since there are S flats and u ACPM, there are <-§> differences
for each ACPM and hence <§> X columns.

The rows of K represent all combinations of % or fewer two-factor interactions.

The first row of K represents no interactions present. Since there are # main effects,

there are (g) two-factor interactions, say m. Therefore, the number of rows of X is

(5)+ (o) () (5) - ()
The elements of (0,1) detection matrix X are determined by the following way.
Note that each two-factor interaction represents four degrees of freedom.
For example, F.F; represents F.F; and P2, each with two degrees of freedom.
The elements of each row will be called (0, 1) detection vector.
Suppose that a (0,1) detection vector for the row IF; is of interest. Then for

each ACPM P; the columns corresponding to main effects, IF;, and F.F;® are



Detection Matrix for 3~ Search Design 63

considered. But by the property of the design matrix A, F.F, and F.F;? belong to
different alias sets. Therefore, for each ACPM P;, main effects and F.F; or main
effects and F.F;® are considered. If some alias sets do not contain F.F; or F.F?,
then only columns corresponding to main effects are considered for that alias set.
In this way the submatrix with columns corresponding to main effects and F.F;
or main effects and F.F;% or main effects are constructed from each ACPM. With
these submatrices the differences between ith row and i’ row (i.c., linear combination
of rows of ACPM corresponding to the ith flat and ¢’ flat) are checked. If the
difference is zero then the corresponding element of a (0,1) detection vector will be
zero. If not, then the corresponding element will be one.
In general, the element &,, of (0,1) detection matrix can be determined by the
following way:
Foe=0  if diir=0
=1 if diir+0,

where p=1, 2, 3,-~-,1+m+<’g>+---+<’z>, mz(;:’), and ¢=1, 2, 3, *-, ({)xu, and
d.iv is the difference between ith row and jth row of the submatrix obtained from
ACPM. In this way, the (0,1) detection vector for all combinations of two-factor

interactions can be obtained.

3. Main Results

From the basic definition of the detection matrix the following lemmas are obtai-
ned directly.
Lemma 1. Suppose that two submatrices obtained from one ACPM for two combina-
tions of interactions are identical. Then two submatrices produce the same (0,1)
detection elements for those two combinations.
Lemma 2. Suppose that two submatrices obtained from each ACPM for two combina-
tions of interactions are identcal. Then (0,1) detection vectors for two combinations
of interactions are the same.
Lemma 3. Two (0,1) detection vectors are distinct if and only if at least one of
ACPM produce distinct (0, 1) detection vectors.
Theorem 1. Suppose that F: and F,, i<j, are aliased with each other in an alias

set. Then for any given parallel flats fraction the (0,1) detection vector for main
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effects is identical with the (0,1) detection vector for FiF;.
Proof. Suppose that F; and F;, 1<j, are aliased with each other in the alias set Si.
It is noted that one of F.F; and F;F;* is in S, and the other is in Sk Therefore, it
is enough to show that for any given parallel flats fraction two submatrices, obtained
from ACPM P;, for main effects and for F.F; produce the same (0,1) detection
elements. Let ¢;=(c¢y, Cq, *++, ¢,)’. Suppose that F.F; is contained in S:. Then the
following two cases are considered:
F. F; F.F,
Do 2c, where [={1,2, -, 7}
(20 c+2n 20+c. where [=m=({1,2, 7}
The submatrix for main effects is composed of (0, ¢:) or (0, ¢;+2¢») and the submatrix
for F\F; is composed of (0,¢,2¢) or (0,¢:+2¢a 2¢.+¢). Hence two submatrices
produce the same (0,1) detection elements for any given parallel flats fraction.
Suppose that F.F;% are contained in S:. Then the following two cases are considered:
F, F; F.F?
(o0 2a C where [={1,2, -, 7}
()0 20+2c. Catc where I#me{l, 2, -, 7).
Similarly, two submatrices produce the same (0,1) detection elements for any given
parallel flats fraction.
Theorem 2. Suppose that F; and F;, 1<, are aliased with each other in an alias
set. Then for any given parallel flats fraction the (0,1) detection vector for F.F.,
where F.F.#F:F;, is identical with the (0,1) detection vector for (FuF., F\F;).
Proof. Suppose that F; and F;, i<j, are aliased with each other in the alias set Sy,
and F.F,. and F.F,% are not contained in S;. Then the following three cases can be
considered:
(1) Alias sets which contain either F.F. or F.F.2.
(2) S which contains F\F; or F.F;,
(3) Alias sets which do not contain F.F,. or F.F.2,
For each case two submatrices, obtained from ACPM, for F,.F, and for (F.F,, F'.F;)
are the same for any given parallel flats. Therefore, for any given parallel flats,
the (0,1) detection vector for F.F. is identical with the (0,1) detection vector for
(F.F., F.F;). Suppose that one of F,.F, and F,F,? is contained in S say F.F..

‘Then we consider the following three cases:
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(1) Alias set which contains FaF.2

(2) Si contains F.F, and F.F; or F.F?.

(3) Alias set which does not contain F.F.2

For each case two submatrices for FnF,. and for (FaFa, FiF;) are the same for any
given parallel flats. Hence the (0,1) detection vector for F.F. is identical with the
(0,1) detection vector (Fuks, F.F)) for any given parallel flats.

Theorem 3. Suppose that F; and F,, i<j, are aliased with each other in the alias
set S; and F., F, in S, where a<b and k#7. Then two (0,1) detection vectors for
the following pairs are the same for any given parallel flats.

(1) main and F:F;

(2) main and F.F

(3) main and (FF;, FoF's)

(4) F,F, and (FF,, F.F;) where F.Fo+F.F;

(5) FoFy and (FyF,, FuF's) where FoFo+=Fo.Fy

Proof. Case 1,2,4 and 5 are immediately followed by Theorem 1 and Theorem 2.
Suppose that Si contains F.F; and S, contains F.F,. Then F.F# and F.Fy® are
contained in S,. This means that no other alias set, except S, Sk and S, contains
F.F;, F.F? F.Fy and F.Fs®. Therefore, two submatrices, obtained from each ACPM
(except Si and S,), for main effects and for (F:F;, F.Fy) are the same for any
given parallel flats. By Lemma 1 two submatrices produce the same (0,1) detection
elements.

The submatrix obtained from P for (F:F;, FoF4) is exactly the submatrix obtained
from Pi for F.F;. Therefore, two submatrices obtained from P for main effects
and (F.F;, F.Fy) produce the same (0,1) detection elements by case 1. Similarly
two submatrices obtained from P, produce the same (0,1) detection elements by
case 2.

The above arguments hold for the following cases:

(1) S. contains F:F; and S, contains F.F?.
(2) S. contains F:F;* and S, contains F.Fs,
(3) S: contains F:F;? and S, contains F.F2.
Hence case 3 is proved.

Theorem 3 implies that (0,1) detection vectors for F.F;, for F.Fy and for (FiF;,
F.F) are identcal, and (0, 1) detection vectors for (FuFq, FiF;) and for (FeFq, FoF3)
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are indentical for any given parallel flats if F; and F; are aliased in S, and F., Fy
in S,.

4. Example

Consider a 3¢ factorial experiment for which it can be assumed that all three and

four-factor interaction effects are negligible. The A matrix for this example will be

1 1 1 o0
a-| J
1 2 0 1
thus there are flats of size nine. The alias sets are
So= {u},
SI={F1,F2F3,F2F42,F3F4}, Szz{FznyFs,F1F47F3F42},
Ssi{Fs,Fth,F1F42,F2F4}, S4:{F4,F1F22,F1F32,F2F32}.

An example of a parallel flats fraction in 27 runs is given with

taken as

0 0 1
C:(C1, Cz, C3) as C= |: }.
T 0 1 2

By choosing the main effect in each alias set as the identified effect, the ACPM are

F, F,F, F,F® F,F, F, F\Fy, F\F, F,F¢?
e 4 4 € 7 e e e e

P =le e 021) (012) P,;=le e (012) (021)}
le  (021) (012) e | Le  (021) (021) (02D
Fy, F\F, FF® F,F, F, F\Fy? F\F@ F,Fg
e e 14 e N Fe 4 [4 e

P.=le e 021) (012)| Pu=|e  (021) (021) (021)}
le (02 e 012 e (012) e 021

For each ACPM the first column consists of e.

Then clearly the elements of the first row of K are zero., Consider two factor
interaction F\F;. Since alias sets S, and S; do not have the two factor interaction
F\F;, it is enough to consider the main effect column of ACPM P, and P, hence
the corresponding detection elements are (0 0 0), (0 0 0) respectively. Since F.F, is

contained in S,, the submatrix obtained from P, is



Detection Matrix for 3~ Search Design 67

F, F.\F,
e e
e €
e (021

The corresponding detection elements are (0 1 1), Similarly, the detection elements
(1 0 1) are obtained from P,. Hence the (0,1) detection vector for row FiF; is(0
00 011 000 10 1). In a similar way all {0, 1) detetion vectors can be obtained.

Table 1 shows the (0, 1) detection matrix for 3% factorial obtained with Cz[g (1) ﬂ
The first row indicates the ACPM matrices, and the second row the difference
between the ith row and the i’ row of ACPM matrices. The first column denotes
the number (0,1) detection vectors and the next four columns the subscript of two-

factor interactions.

Table 1. The (0,1) Detection Matrix for the 3¢ Factorial

P, P, P, P,

1—2 1-3 2—-3 1-2 1-3 2—-3 1—2 1-3 2—3 1-2 1-3 2-3

1 MAIN 0 0 0 0 0 0 0 0 0 0 0 0
2 12 0 0 0 0 0 0 0 1 1 1 1 1
3 13 0 0 0 0 1 1 0 0 0 1 0 1
4 14 0 0 0 1 1 1 1 0 1 0 0 0
5 23 0 1 1 0 0 0 0 0 0 1 1 0
6 24 1 1 1 0 0 0 1 1 0 0 0 0
7 34 1 0 1 1 1 0 0 0 0 0 0 0
8 12 13 0 0 0 0 1 1 0 1 1 1 1 1
9 12 14 0 0 0 1 1 1 1 1 1 1 1 1
10 12 23 0 1 1 0 0 0 0 1 1 1 1 1
1 12 22 1 1 1 0 0 0 1 1 1 1 1 1
12 12 34 1 0 1 1 1 0 0 1 1 1 1 1
13 13 14 0 0 0 1 1 1 1 0 1 1 0 1
14 13 23 0 1 1 0 1 1 0 0 0 1 1 1
15 13 24 1 1 1 0 1 1 1 1 0 1 0 1
16 13 34 1 0 1 1 1 1 0 0 0 1 0 1
17 14 23 0 1 1 1 1 1 1 0 1 1 1 0
18 14 24 1 1 1 1 1 1 1 1 1 0 0 0
19 14 34 1 0 1 1 1 1 1 0 1 0 0 0
20 23 24 1 1 1 0 0 0 1 1 0 1 1 0
21 23 34 1 1 1 1 1 0 0 0 0 1 1 0
22 24 34 1 1 1 1 1 0 1 1 0 0 0 0

column 4—8 denote the subscripts of two-factor interactions
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