Finding influential factors from given clustering result is a typical data science problem. Genetic Algorithm based method is proposed to derive influential factors and its performance is compared with two conventional methods, Classification and Regression Tree (CART) and Chi-Squared Automatic Interaction Detection (CHAID), by using Dunn's index measure. To extract the influential factors of preference towards political parties in South Korea, the vote result of $18^{th}$ presidential election and 'Demographic', 'Health and Welfare', 'Economic' and 'Business' related data were used. Based on the analysis, reverse engineering was implemented. Implementation of reverse engineering based approach for influential factor analysis can provide new set of influential variables which can present new insight towards the data mining field.
본 논문에서는 음성 신호기의 4.8 Kbps에서 효율적인 배음 축척과 결합된 트리 부호기를 실현한다. 음성신호를 2대 1 압축하기 위해 TDHS 알고리즘을 사용한다. 이 과정은 4.8 Kbps에서 6.4 KHz 샘플링율을 적용하면 트리 부호기에 1.5 비트/샘플을 할당할 수 있다. 트리 부호기의 견실성은 short-term 예측기의 적응시 사용되는 입력 신호를 효율적 선택함으로써 개선되어진다. 또한 채널에서 전송에러기 트리 부호기의 성능은 피치 예측기에 스무더를 부가함으로써 개선된다. 배음 축척과 결합된 트리 부호기는 4.8 Kbps 전송률에서 좋은 질의 음성을 출력한다.
본 연구에서는 소프트웨어 개발 시 발생하는 결함을 찾아내고, 원인을 식별 및 해결책을 제시하고자 한다. 또한 검출된 결함 항목을 기반으로 하여 결함간의 연관성을 파악하여 opportunity tree로 나타낸다. 신뢰성 있는 소프트웨어를 개발하기 위해서는 소프트웨어와 개발과정에 존재하는 결함을 찾아내고 이를 관리하는 것이 중요한 요인이 된다. 이와 같은 요인은 품질로 귀결되게 되는데, 품질은 비용, 일정과 함께 프로젝트의 성공을 결정하는 주요 요소이다. 따라서 결함 처리 opportunity tree 및 알고리즘을 이용하여 유사한 프로젝트를 수행 시, 결함 예측하여 대비 할 수 있게 된다.
트리 재균형 과정을 최소화하기 위하여 이진 검색 트리의 불균형도에 따른 검색 성능에 관한 수량적 정보를 얻기 위한 실험이 행하여졌다. 트리를 구성하는 노드들의 좌, 우 서브트리 높이 차 인 균형 인수에 의하여 불균형도를 수량화 한 결과 불균형도가 심해질수록 검색성능이 저하됨이 실험 자료들에 의하여 확률적으로 증명되었고 (p<0.01), 노드 개수와 평균 검색 횟수 관계를 설명하기 위한 모형으로는 로그 모형 보다 선형 모형이 적합한 경향을 보였다. 그러나 균형 인수 크기가 3 미만인 노드들만으로 구성된 이진 검색 트리의 성능은 높이 균형이진 트리에 비하여 저하되지 않는 것으로 평가된다. 본 연구 결과들은 이진 트리를 자료 구조를 사용하는 소프트웨어 관리에 적용될 수 있을 것이다.
R-tree는 일반적으로 트리 노드의 크기를 디스크 페이지의 크기와 같게 함으로써 I/O 성능이 최적화 되도록 구현한다. 최근에는 주메모리 환경에서 CPU 캐시 성능을 최적화하는 R-tree의 변형이 개발되었다. 이는 노드의 크기를 캐시 라인 크기의 수 배로 하고 MBR에 저장되는 키를 압축하여 노드 하나에 더 많은 엔트리를 저장함으로써 성능을 높였다. 그러나, 디스크 최적 R-tree와 캐시 최적 R-tree의 노드 크기 사이에는 수십-수백 바이트와 수-수십 킬로바이트라는 큰 차이가 있으므로, I/O 최적 R-tree는 캐시 성능이 나쁘고 캐시 최적 R-tree는 디스크 I/O 성능이 나쁜 문제점을 가지고 있다. 이 논문에서는 CPU 캐시와 디스크 I/O에 모두 최적인 R-tree, PR-tree를 제안한다. 캐시 성능을 위해 PR-tree 노드의 크기를 캐시 라인 크기보다 크게 만든 다음 CPU의 선반입(prefetch) 명령어를 이용하여 캐시 실패 횟수를 줄이고, 트리 노드를 디스크 페이지에 낭비가 적도록 배치함으로써 디스크 I/O 성능도 향상시킨다. 또한, 이 논문에서는 PR-tree에서 검색 연산을 수행하는데 드는 캐시 실패 비용을 계산하는 분석 방법을 제시하고, 최적의 캐시와 I/O 성능을 보이는 PR-tree를 구성하기 위해, 가능한 크기의 내부 단말 노드, 중간 노드를 갖는 PR-tree 생성하여 성능을 비교하였다. PR-tree는 디스크 최적 R-tree보다 삽입 연산은 3.5에서 15.1배, 삭제 연산은 6.5에서 15.1배, 범위 질의는 1.3에서 1.9배, k-최근접 질의는 2.7에서 9.7배의 캐시 성능 향상이 있었다. 모든 실험에서 매우 작은 I/O 성능 저하만을 보였다.
최근 화물수요모형에 화물자동차 투어행태를 반영하기 위한 접근방법이 제시되었다. 화물자동차 이동을 투어기반 접근방법으로 모형화 하기 위해서는 화물자동차 투어와 투어유형에 대한 이해가 필요하다. 본 연구는 화물자동차 투어유형을 왕복형 투어와 체인형 투어로 구분하여 이들 투어유형 선택행태를 분석하였다. 투어유형 선택행태를 분석하기 위한 방법으로는 의사결정나무(decision tree)와 로짓모형(logit model)을 이용하였다. 분석결과 화물자동차 투어유형을 분류하는 설명변수로 화물적재율, 평균화물량, 총화물량이 선정되었으며, 의사결정나무와 로짓모형이 유사한 결과를 도출하였다. 또한 소형과 중형 화물자동차의 투어유형을 분류하는 설명변수가 큰 차이를 보이지 않음에 따라 화물자동차 투어를 계획함에 있어 화물을 어떻게 적재할 것인지가 가장 중요한 것으로 나타났다. 의사결정나무와 로짓모형의 예측력을 비교한 결과는 의사결정나무가 로짓모형에 비해 상대적으로 우수한 결과를 보였는데, 이는 화물자동차 투어유형을 분류함에 있어 로짓모형과 같이 설명변수의 선형적 결합에 의한 분류 보다는 의사결정나무와 같이 다수 설명변수들의 규칙조합으로 분류하는 것이 효과적임을 나타낸다.
본 연구에서는 코로나 이전과 이후의 강의평가에 대한 생각이 어떻게 변화하고 있는지를 분석하고자 하였다. 이를 위해서 A대학을 대상으로 코로나 이전과 이후에 실시한 교양과 전공 수업에 대한 강의평가 자료를 토대로 데이터마이닝 기법 중에서 결정나무분석(Decision Tree)를 사용하였다. 연구결과에 의하면, 교양은 '강의방식(Method)'에서 '강의내용(content)'으로, 전공은 전과 후 모두 '지식향상(Knowledge)'이 중요한 요인으로 나타났다. 특히 교양과 전공 강의평가에서 공통적으로 코로나 후에 '과제및평가적합(Assignment)'이 중요한 요인으로 나타났는데, 이는 향후 교수에게는 수업 중 적절한 교수법, 학생들과의 상호작용, 과제나 시험 결과 피드백 등의 교수역량이 필요함을 시사한다. 이러한 연구 결과를 바탕으로 학생들과의 소통 활성화 방안 지원과 블렌디드 러닝 활성화에 대한 개선방안을 제시하였다.
In urban spaces surrounded by buildings, trees could disperse sound energy, which affect sound level distribution and street canyon reverberation. Therefore, this paper examines the amount of scattered sound energy from a tree in open field by means of a reverberation time (RT). Five trees of different species and crown sizes were considered. The influential factors include crown size and shape, foliage condition, and source-receiver distance. The results show that RT is proportionally increased with the increase of tree crown sizes, which is the most determining factor. The maximum RT measured was 0.34 sec at 4000 Hz for the studied trees in leaf. The presence of leaves increased RT at high frequencies, typically by 0.14 sec at 4000 Hz. With increasing source-receiver distance within 40 m, RT was slightly changed.
As a new algorithm for RC tree delay estimation, we propose a $\tau$-model of the driver and a moment propagation method. The $\tau$-model represents the driver as a Thevenin equivalent circuit which has a one-time-constant voltage source and a linear resistor. The new driver model estimates the input voltage waveform applied to the RC more accurately than the k-factor model or the 2-piece waveform model. Compared with Elmore method, which is a lst-order approximation, the moment propagation method, which uses $\pi$-model loads to calculate the moments of the voltage waveform on each node of RC trees, gives more accurate results by performing higher-order approximations with the same simple tree walking algorithm. In addition, for the instability problem which is common to all the approximation methods using the moment matching technique, we propose a heuristic method which guarantees a stable and accureate 2nd order approximation. The proposed driver model and the moment propagation method give an accureacy close to SPICE results and more than 1000 times speedup over circuit level simulations for RC trees and FPGA interconnects in which the interconnect delay is dominant.
전통적인 HRA(Human Reliability Analysis)방법은 특정 애플리케이션 또는 산업을 염두에 두고 있으며. 또한 이러한 방법은 종종 복잡하며, 시간이 많이 걸리고 적용하는 데 비용이 많이 들며 직접 비교하기에는 적합하지 않다. 제안된 HFHM(Human Factors Hazard Model: 인적 요인 위험 모델)은 기검증되고 시간 테스트를 거친 FTA(Fault Tree Analysis:결함 트리 분석)및 ETA(Event Tree Analysis:이벤트 트리 분석)의 확률 분석 도구 및 새로 개발된 HEP(Human Error Probability:인적 오류 확률)예측 도구와 통합되고, 인간과 관련된 PSF(Performance Shaping Factors:성능 형성 요인)를 중심으로 새로운 접근 방식으로 개발되었다. 인간-시스템은 상호작용으로 인한 재난사고 가능성을 모델링하는 위험분석 접근법 HFHM은 다음과 같은 상용 소프트웨어 도구 내에서 예시되고 자동화된다. HFHM에서 생성된 데이터는 SE 분석가 및 설계에 대한 표준화된 가이드로 사용될 수 있다. 본 연구에서는 인적 위험을 예측하는 이 새로운 접근 방식을 통해, 전체 시스템에 대한 포괄적인 재난안전 분석을 가능하게 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.