• Title/Summary/Keyword: FactSage

Search Result 22, Processing Time 0.039 seconds

Prediction of Tcv for Coal Slags under Reducing Condition (환원 조건에서 석탄 슬래그의 Tcv 예측)

  • Park, Yoonkyung;Oh, Myungsook
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.623-630
    • /
    • 2006
  • The slag viscosity is an important factor determining the operation temperature of entrained flow type of gasifiers. The temperature of critical viscosity, $T_{cv}$, for 5 crystalline slags was predicted by empirical models and FactSage equilibrium calculations, and the validity of each method was tested. Two empirical models were employed: one using $T_h$ from the ash fusion test, and the other using the concentrations of 5 major components. The first model using $T_h$ over-predicted $T_{cv}$ by $20{\sim}100^{\circ}C$, while the model based on the slag composition under-predicted $T_{cv}$ by $80{\sim}120^{\circ}C$. In the equlibrium calculations, $T_{cv}$ was obtained from the liquidus temperature. When the 4-major component concentrations were used in the calculation, the predicted temperatures were higher than the observed. The liquidus temperature was very sensitive to the concentrations of minor components, and the addition of MgO and $Na_2O$ lowered the liquidus temperature. The results with 4 major and 3 minor components most closely described experimentally observed $T_{cv}$. In the case that a chromia refractory was used, it was shown that $Cr_2O_3$ concentration in the slag also needs to be included for more accurate prediction of $T_{cv}$.

Microstructure and High Temperature Deformation Behavior of Heat Resistant Stainless Steel for a Retort (열환원반응관용 내열강의 미세조직과 고온변형거동)

  • Choi, G.S.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • High temperature deformation behavior of a heat-resistant duplex stainless steel, used as a retort in the Pidgeon process for Mg production, was investigated in this study. 25Cr-8Ni based duplex stainless steels were cast into rectangular ingots, with dimensions of $350mm{\times}350mm{\times}100mm$. Nitrogen and yttrium were added at 0.3wt.% each to enhance the heat-resistance of the steel. Phase equilibrium was calculated using the thermodynamic software FactSage$^{(R)}$ and the database of FSStel. For comparison, cast 310S steel, a widely used heat-resistant austenitic stainless steel, was also examined in this study. Dilatometry was conducted on the as-cast ingots for the temperature range from RT to $1200^{\circ}C$ and the thermal expansion coefficients were evaluated. The nitrogen addition was found to have an effect on the thermal expansion behavior for temperatures between 800 and $1000^{\circ}C$. High temperature tensile and compression tests were conducted on the ingots for temperatures ranging from 900 to $1230^{\circ}C$, which is the operation temperature employed in Mg production by the Silico-thermic reduction process. The steel containing both N and Y showed much higher strength as compared to 310S.

The prediction of crystalline formation in slag viscosity changes at gasifier atmosphere (가스화 조건에서 슬래그 점도 변화에 영향을 미치는 결정 형성 예측)

  • Ju, Hyunju;Lee, Joongwon;Oh, Myongsok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.76.1-76.1
    • /
    • 2011
  • 석탄 가스화기 내에서 슬래그의 축적에 의한 막힘 현상 등으로 발생 가능한 조업중단을 예방하기 위해 탄의 종류에 따른 슬래그의 유동을 정확히 예측하는 것은 중요하다. 슬래그의 유동은 원료인 석탄의 회 성분 조성 그리고 가스화기 온도의 영향을 크게 받는다. 회가 용융된 형태인 슬래그의 융점 특성을 파악하여 슬래그 거동을 예측하기 위해서는 회를 조성하고 있는 주성분의 비율 뿐 아니라 소량의 성분들도 고려하여야 한다. 또한, 가스화기 조업 조건 중 수증기 분압이 슬래그 점도에 미치는 변화를 파악하여 공정 조건 확립 및 슬래그 계통 제어 로직에 반영 할 수 있다. 따라서, 대표적 열화학 평형계산 프로그램인 Factsage를 이용하여 슬래그 성분의 액상선 온도를 예측해보았다. 슬래그는 회 성분의 조성에 따라 결정 슬래그와 유리 슬래그로 나눌 수 있다. 본 연구에서는 결정 슬래그로는 Alaska Usibelli 탄을, 유리 슬래그로는 Kideco 탄의 조성을 사용하여, 가스화기 조업 조건 중 수증기의 분압에 따라 석탄 슬래그의 형성 및 점도 변화에 직접적인 영향을 미치는 결정 형성에 대한 상관관계를 예측해 보았다. 또한, 슬래그 유동에 영향을 줄 수 있는 요인으로써, 석탄의 품질을 결정하는 인자인 Base/Acid Ratio, Iron in Ash, Calcium in Ash, Silica-to-Alumina Ratio, Inron-to-Calcium Ratio를 달리 변화시켜가며 슬래그 점도 변화에 직접적인 영향을 미치는 결정 형성을 예측하였다. 이 예측결과는 향후 실험 데이터와 비교하여, 슬래그 처리 부분의 모니터링에 기초 자료로 활용될 뿐 아니라, 슬래그점도 측정 시스템의 운전 파라미터를 도출하는데 이용 가능할 것이다.

  • PDF

Carbide Behavior in STD11 Tool Steel during Heat Treatment (STD11 공구강의 열처리 온도에 따른 탄화물 거동)

  • Hong, Ki-Jung;Song, Jin-Hwa;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.262-270
    • /
    • 2011
  • Carbide precipitation and dissolution behavior at various temperatures during heat treatment has been studied in STD11 cold working die steel through confocal scanning laser microscopy; dilatometry; and X-ray diffraction analysis. The equilibrium phase diagram and phase fractions with temperature were calculated using a FactSage program. Confocal laser microscopic observation revealed that ${\alpha}$ to ${\gamma}$ transformation temperature is near $800^{\circ}C$; M7C3 carbides melt at $1245^{\circ}C$; and the melting temperature of STD11 is near $1370^{\circ}C$. XRD results indicated that the M23C6 carbides dissolve in the matrix if austenitized at over $1030^{\circ}C$; while the M7C3 carbides remain up to $1200^{\circ}C$ although their amount decreases. The calculated equilibrium phase diagram showed good agreement with experimental results on carbide dissolution and phase transformation temperatures.

Thermodynamic Study for P Reduction from Slag to Molten Steel by using the Microwave Heating (마이크로웨이브 가열을 이용한 슬래그로부터 인의 용철로의 환원이동에 관한 열역학적 고찰)

  • Lee, Joon-Ho;Kim, Eun-Ju;Kim, Tae-Young;Kang, Youn-Bae
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.42-46
    • /
    • 2010
  • Phosphorus exhibits considerable segregation in steelmaking slag. In order to recover phosphorus from slag to $K_3PO_4$ via molten iron, a carbothermic reaction using microwave heating was suggested recently. The carbothermic reduction of phosphorus from slag to molten iron using microwave heating was carried out at 2073K. However, at this temperature the thermodynamic properties of both slag and molten iron cannot be determined experimentally. Therefore, the computational approach of the so-called CALPHAD method is very useful to understand the transfer of phosphorus from slag to metal and to enhance this reaction. In the present investigation, a theoretical study of the reduction behavior of phosphorus in slag was carried out at much lower temperatures using the recently developed thermodynamic database in the FactSage program. The calculated results showed reasonable accordance with the experimental data; namely, the thermodynamic database could be applied successfully to higher temperature reactions. The current study found that higher temperature and high $SiO_2$ concentration are favorable for the recovery of phosphorus from slag.

Thermodynamic analysis on the chemical vapor deposition process of Ta-C-H-Cl system

  • Kim, Hyun-Mi;Shim, Kwang Bo;Lee, Jung-Min;Lee, Hyung-Ik;Choi, Kyoon
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.519-524
    • /
    • 2018
  • Carbon/carbon composites (C/C) have been widely studied in the aerospace field because of their excellent thermal shock resistance and specific strength at high temperature. However, they have the problems that is easily oxidized and deteriorated under atmospheric environment. In order to overcome these shortcomings, the CVD coating of ultra-high-temperature ceramics to C/C has become an important technical issue. In this study, thermodynamic calculations were performed to TaC CVD coating on C/C by FactSage 6.2 program. The Ta-C phase diagrams were constructed with the results of thermodynamic calculations in the Ta-C-H-Cl system. Based on the Ta-C phase diagram, the experimental conditions were designed to confirm the deposition of various phases such as TaC single phase, TaC + C and $TaC+Ta_2C$ by varying the composition of Ta/C ratio. The deposited films were found to be in good agreement with the predicted phases.

POTENTIAL OF NIRS FOR SUPPORTING BREEDING AND CULTIVATION OF MEDICINAL AND SPICE PLANTS

  • Schulz, Hartwig;Steuer, Boris;Kruger, Hans
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1162-1162
    • /
    • 2001
  • Whereas NIR spectroscopy has been applied in agriculture for more than 20 years, few studies refer to those plant substances occurring only in smaller amounts. Nevertheless there is a growing interest today to support efficiently activities in the production of high-quality medicinal and spice plants by this fast and non-invasive method. Therefore, it was the aim of this study to develop new NIR methods for the reliable prediction of secondary metabolites found as valuable substances in various plant species. First, sophisticated NIR methods were established to perform fast quality analyses of intact fennel, caraway and dill fruits deriving from single-plants [1]. Later on, a characterization of several leaf drugs and the corresponding fresh material has been successfully performed. In this context robust calibrations have been developed for dried peppermint, rosemary and sage leaves for the determination of their individual essential oil content and composition [2]. A specially adopted NIR method has been developed also for the analysis of carnosic acid in the leaves of numerous rosemary and sage gene bank accessions. Carnosic acid is an antioxidative substance for which several health promoting properties including cancer preservation are assumed. Also some other calibrations have been developed for non-volatile substances such as aspalathin (in unfermented rooibos leaves), catechins (in green tea) and echinacoside (in different Echinacea species) [3]. Some NIR analyses have also been successfully performed on fresh material, too. In spite of the fact that these measurements showed less accuracy in comparison to dried samples, the calibration equations are precise enough to register the individual plant ontogenesis and genetic background. Based on the information received, the farmers and breeders are able to determine the right harvest time (when the valuable components have reached their optimum profile) and to select high-quality genotypes during breeding experiments, respectively. First promising attempts have also been made to introduce mobile diode array spectrometers to collect the spectral data directly on the field or in the individual natural habitats. Since the development of reliable NIRS methods in this special field of application is very time-consuming and needs continuous maintenance of the calibration equations over a longer period, it is convenient to supply the corresponding calibration data to interested user via NIRS network. The present status of all activities, preformed in this context during the last three years, will be presented in detail.

  • PDF

Study on Flow Properties and Rheology of Slag from Coal Gasification Based on Crystalline Phase Formation (결정상 분석을 통한 석탄가스화기 Slag 특성 연구)

  • Koo, Jahyung;Paek, Minsu;Yoo, Jeongseok;Kim, Youseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.73.1-73.1
    • /
    • 2011
  • 분류층 석탄가스화기에서 슬래그의 원활한 배출은 가스화 플랜트 운전 및 성능에 중대한 영향을 미치는 것으로 알려져 있다. 가스화기의 운전 온도에서 슬래그 점도가 일정수준 이상인 경우에는 가스화기 하부 슬래그 배출구 막힘 현상을, 일정 수준 이하일 경우에는 Membrane wall의 slag 두께가 얇아져 가스화기 수냉벽에 열적 악영향을 미친다. 가스화기의 안정적인 운전을 위한 석탄 선정 시, 석탄 슬래그의 용융온도 및 점도의 파악이 중요하다. 일반적으로 석탄슬래그의 용융온도는 ASTM D-1857 절차에 따른 환원분위기에서의 회융유온도(FT)측정을 통해, 점도는 고온점도측정 실험을 통해 분석하고 있다. 이런 실험적인 분석방법은 다양한 슬래그조성 및 온도 변화에 따른 영향을 살펴보기에는 많은 시간과 비용이 발생하므로 슬래그조성 및 온도 변화에 따른 용융온도 및 점도 예측이 필요하다. 본 연구에서는 200여 탄종의 회용유점 측정 결과와 FactSage에서 예측되는 슬래그 결정상 생성 및 회용유점(FT)에서의 고체분율과의 상관관계를 분석하였다. 이를 바탕으로 다양한 Ash 조성(SiO2, Al2O3, Fe2O3, CaO)에 대한 회용유점(FT)을 예측할 수 있는 프로그램을 개발하였다. 또한 50여 탄종의 슬래그 점도 측정 결과를 Facsage에서 예측되는 결정상 종류 및 Ash 조성을 기준으로 분류하였다. 결정상 종류 및 Ash 조성을 기준으로 기존 슬래그점도예측모델를 활용하여 보다 정확한 슬래그 점도 예측 프로세스를 개발하였다. 본 연구 결과는 플랜트 운전 결과 검증을 통하여 석탄 가스화 플랜트에 적합한 석탄의 선정, 혼탄 비율 및 첨가제 투입량 결정을 위해 활용될 것으로 기대된다.

  • PDF

Thermodynamic Prediction of TaC CVD Process in TaCl5-C3-H6-H2 System (TaCl5-C3-H6-H2 계에서 TaC CVD 공정의 열역학 해석)

  • Kim, Hyun-Mi;Choi, Kyoon;Shim, Kwang-Bo;Cho, Nam-Choon;Park, Jong-Kyoo
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • An ultra-high temperature ceramic, tantalum carbide, has received much attention for its favorable characteristics: a superior melting point and chemical compatibility with carbon and other carbides. One drawback is the high temperature erosion of carbon/carbon (C/C) composites. To address this drawback, we deposited TaC on C/C with silicon carbide as an intermediate layer. Prior to the TaC deposition, the $TaCl_5-C_3H_6-H_2$ system was thermodynamically analyzed with FactSage 6.2 and compared with the $TaCl_5-CH_4-H_2$ system. The results confirmed that the $TaCl_5-C_3H_6-H_2$ system had a more realistic cost and deposition efficiency than $TaCl_5-CH_4-H_2$. A dense and uniform TaC layer was successfully deposited under conditions of Ta/C = 0.5, $1200^{\circ}C$ and 100 torr. This study verified that the thermodynamic analysis is appropriate as a guide and prerequisite for carbide deposition.

Study on the Anisotropic Size Change by Austenitizing and Tempering Heat Treatment of STD11 Tool Steel Using Dilatometry (딜라토미터를 이용한 STD11 공구강의 오스테나이징 및 템퍼링 열처리에 따른 치수 변화 이방성 연구)

  • Hong, Ki-Jung;Kang, Won-Guk;Song, Jin-Hwa;Chung, In-Sang;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.800-808
    • /
    • 2008
  • Heat treatment is an important step for tool manufacture, but unavoidably generates dimensional distortion. This study investigated the continuous dimensional change and the anisotropic behavior of STD11 tool steel during austenitizing and tempering heat treatment especially using quenching dilatometer. Dilatometric results represented that the dimensional change along longitudinal direction was larger than that along transverse direction. Anisotropic phase transformation strain was produced in forged STD11 tool steel during heat treatment. Anisotropic dimensional change increased with increasing austenitizing temperature. After tempering, anisotropic distortion was partially reduced. FactSage thermodynamic equilibrium phase simulation and microstructural observation (FE-SEM, TEM) showed that large ($7{\sim}80{\mu}m$) elongated $M_7C_3$ carbides could be formed along rolling direction. The resolution of elongated carbides during austenitizing was found to be related with the change of martensite transformation temperature after heat treatment. Anisotropic size change of STD11 tool steel was mainly attributed to large elongated carbides produced during rolling process. Using dilatometric and metallographic examination, the possible mechanism of the anisotropic size change was also discussed.