• 제목/요약/키워드: Facing Targets Sputtering

검색결과 144건 처리시간 0.032초

PC 기판상에 제작된 ITO 박막의 특성 (Characteristics of ITO Thin Films prepared on PC Substrate)

  • 조범진;김경환
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.162-166
    • /
    • 2007
  • The ITO thin films were prepared by facing targets sputtering (FTS) system on polycarbonate (PC) substrate. The ITO thin films were deposited with a film thickness of 100 nm at room temperature. As a function of sputtering conditions, electrical and optical properties of prepared ITO thin films were measure. The electrical and optical characteristics of the ITO thin films were evaluted by Hall Effect Measurement (EGK) and UV/VIS spectrometer (HP), respectively. From the results, the ITO thin films was deposited with a resistivity $8{\times}10^{4}\;{\Omega}-cm$ and transmittance over 80 %.

PES 기판상에 제작한 ITO 박막의 특성 (Characteristics of ITO thin films prepared on PES substarte)

  • 김상모;임유승;조범진;금민종;김경환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.69-70
    • /
    • 2006
  • The ITO thin films were prepared by Facing Targets Sputtering(FTS) method on polyethersulfon(PES) substrate. The ITO thin films were deposited with the film thickness of 100nm at room temperature and working gas pressure of 1 mTorr. As a function of sputtering conditions, electrical and optical properties of prepared ITO thin films were evaluated by Hall Effect Measurement(EGK) and UV-VIS spectrometer(HP), respectively. From the results, the ITO thin films was deposited was with a resistivity $8.3{\times}10^{-4}[{\Omega}-cm]$ and transmittance over 80% in the visible range.

  • PDF

폴리머 기판 상에 제작한 AZO 박막의 특성 (Properties of AZO thin film prepared on polymer substrate)

  • 조범진;금민종;김경환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1500-1501
    • /
    • 2006
  • Because AZO thin film has the potential applications, Preparing AZO thin films on the polymer substrate has been widely studied. In this study, we prepared AZO thin films on polyethersulfon (PES) at room temperature. The AZO thin films were prepared at $O_2$ gas flow rate of 0.05 and sputtering power of 100W with different film thickness by facing targets sputtering method. The electrical, optical and crystallographic properties of AZO thin films were measured by Hall effect measurement system, UV/VIS spectrometer, SEM and XRD. From the results, we obtained AZO thin films with a low resistivity, a transmittance of over 80% and c-axis preferred orientation.

  • PDF

투입전력 및 두께 변화 조건에 따른 Indium zinc oxide 박막의 특성 (Characteristics of indium zinc oxide thin films with input power and film thickness)

  • 임유승;김상모;금민종;손인환;장경욱;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.406-407
    • /
    • 2007
  • We prepared indium zinc oxide (IZO) thin film for cathode electrode such as an application of flat panel display by using the facing targets sputtering (FTS) method at room temperature. The effects of input power and film thickness were investigated with respect to physical and optical properties of films such as deposition rate, electrical properties, microstructure and transmittance. We could obtain properties of IZO thin films of under $10^{-3}\;{\Omega}-cm$ in resistivity and the thin films of over 90% in transmittance. Also, we obtained IZO thin films which were an amorphous structure.

  • PDF

연성기판에 증착한 투명전도막의 제작 (Preparation of thransparent conductive film using flexible substrates)

  • 조범진;금민종;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 학술대회 및 기술세미나 논문집 디스플레이 광소자
    • /
    • pp.39-40
    • /
    • 2006
  • We prepared ZnO:Al (AZO) thin films on polycarbonate (Pc) and polyethersulfon (PES). Because the polymer substrate has weak thermal resistance. The AZO thin films were deposited at room temperature by facing targets sputtering (FTS) method In the work, AZO thin films were deposited with different thickness in 1mTorr and $O_2$ gas flow rate 0.05. The electrical, optical and crystallographic properties were measured From the results, the resistivity of $7.3{\times}10^{-4}{\Omega}cm$ and transmittance of over 80% in visible range were obtained.

  • PDF

기판온도 및 후 열처리에 따른 AZO(ZnO:Al) 박막의 특징 (Characteristics of AZO(ZnO:Al) thin film with the substrate temperature and post-annealing)

  • 김경환;조범진;금민종;손인환;최형욱;최명규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.432-433
    • /
    • 2005
  • In this study, Al doped ZnO(AZO) thin film were prepared on glass substrates by FTS(Facing Targets Sputtering) system. We investigated electrical, optical and structural properties of AZO thin film with the substrate temperature of the R.T, $100^{\circ}C$, $200^{\circ}C$ and the post-annealing. The crystallinity of AZO thin film was increased with increasing the substrate temperature and post-annealing temperature $600^{\circ}C$. The remarkable change of the resistivity with the substrate temperature didn't found and the resistivity with post-annealing was increased slightly.

  • PDF

기판온도 변화에 따른 디스플레이 하부 전극용 AZO 박막의 제작 (Preparation of AZO thin film using bottom electrode of display with substrate temperature)

  • 김경환;조범진;금민종;손인환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.69-71
    • /
    • 2005
  • In this study, Al doped ZnO(AZO)thin film were prepared on glass substrates by FTS(Facing targets Sputtering) system. We investigated electrical.. optical and structural properties of AZO thin film under the substrate temperature of the R.T. $100^{\circ}C$, $200^{\circ}C$, respectively, From XRD measurements it was found the crystallization of AZO thin film was increased with increasing the substrate temperature.

  • PDF

스퍼터링법을 이용한 OLED용 Al 전극의 제작 (Preparing of the AI electrode for OLED by Sputtering Methode)

  • 김경환;금민종
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.72-75
    • /
    • 2005
  • In this study Al electrode for OLED was deposited by FTS(Facing Targets Sputtering) system which can deposit thin films with low substrate damage. The Al thin films were deposited on the cell(LiF/EML/HTL/Bottom electrode) as a function of working gas such as Ar, Kr or mixed gas. Also Al thin films were prepared with working gas pressure (1, 6 mTorr ). The film thickness and I-V curve of Al/cell were evaluated by $\alpha$-step and semiconductor parameter (HP4156A) measurement. In the results, when Al thin film were deposited using pure Ar gas, the turn-on voltage of Al/cell was about 11[V]. And the turn-on voltage of Al/cell can be decrease to about 7[V].

  • PDF

Ag 두께에 따라 코팅한 ZnO 박막의 특성 (Properties of ZnO thin film coating Ag thickness)

  • 이지훈;임유승;김상모;금민종;장경욱;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.433-434
    • /
    • 2007
  • We prepared ZnO thin films coating Ag on glass substrates at room temperature by using facing targets sputtering (FTS) method. ZnO thin films were deposited with same conditions. Ag with various thickness of thin films were used as intermediate layers. The electrical, optical and crystallographic properties of thin films were investigated by Four-Point probe, UV/VIS spectrometer and XRD. From the results, we could confirm that the thickness of Ag layer changes the electrical and optical performances of the multilayers.

  • PDF

PES 기판상에 증착된 AZO 박막의 특성연구 (Properties of AZO thin film deposited on the PES substrate)

  • 김상모;임유승;최명규;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.403-404
    • /
    • 2007
  • We prepared the Al doped ZnO (AZO) thin film on polyethersulfon (PES) without any substrate heating by Facing Targets Sputtering (FTS) system. ZnO doped the content of Al 2 wt% was used and the sputtering conditions were gas pressure 1mTorr and input power 100W. The electrical, structural and optical properties of AZO thin films were investigated. To investigate the as-deposited thin film properties, we employed four-point probe, UV/VIS spectrometer, X-ray diffractometer (XRD), scanning electron microscopy (SEM), Hall Effect measurement system and Atomic Force Microscope (AFM).

  • PDF