• Title/Summary/Keyword: Facing Material

Search Result 226, Processing Time 0.037 seconds

Dependence on the Oxygen Gas of ITO Thin film for TOLED by Facing Targets Sputtering Method (대향타겟식 스퍼터링법을 이용한 TOLED용 ITO 박막의 산소 가스 의존성)

  • Keum Min-Jong;Kim Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.87-90
    • /
    • 2006
  • In case of preparation of ITO thin film for using top electrode of Top-emitting Organic Light Emitting Diodes(TOLEDs), the ITO thin film should be prepared at room temperature and low oxygen gas flow condition in order to reduced the damage of organic layer due to the bombardment of highly energetic particles such as negative oxygen ions which accrued from the plasma. In this study, the ITO thin film with high optical transmittance and low resistivity prepared as a function of oxygen gas (0 ${\~}$ 0.8 sccm) and Ar gas was fixed at 20 sccm by the Facing Targets Sputtering (FTS) method. The electrical and optical properties of ITO thin films were measured by Hall effect measurement, UV/VIS spectrometer, respectively In the results, we obtained the ITO thin film with lowest resistivity($3{\times}10^{-4} {\Omega}{\cdot} cm$) at oxygen gas flow 0.2 sccm and optical transmittance over $80\%$ at oxygen gas flow over 0.2 sccm.

Properties of $(SiO_2)_x(ZnO)_y$ gas barrier films using facing target sputtering system with low temperature deposition process for flexible displays (플렉서블 디스플레이용 저온공정을 갖는 대향 타겟식 스퍼터링 장치를 이용한 $ZrO_2$ 보호막의 특성)

  • Cho, Do-Hyun;Kim, Ji-Hwan;Lee, Jae-Hwan;Ryu, Sung-Won;Sohn, Sun-Young;Park, Sung-Hwan;Kim, Jong-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.48-49
    • /
    • 2008
  • 본 실험에서는 대향 타겟식 스퍼터링 (face target sputtering, FTS) 장비를 사용하여 플렉서블 디스플레이용 poly ethylene naphthalate (PEN) 플라스틱 기판 위에 보호층으로 사용된 $ZrO_2$ 박막의 특성들에 대해 연구하였다. FTS에 의해 3 시간동안 증착된 $ZrO_2$ 박막의 기판 온도는 $69^{\circ}C$ 로 낮은 증착 온도를 나타내었으며, 이는 유리전이온도가 낮은 PEN 과 같은 플라스틱 기판위에 박막 증착시 적용하기에 적합하다. 제작된 $ZrO_2$ 박막에서 기판 중심으로부터 거리의 함수로 측정된 박막의 두께 차이는 약 4.5%로 매우 균일한 두께를 갖는 것으로 측정되었다.

  • PDF

A study on the properties of transparent conductive ZnO:Al films on variaton substrate temperature (기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화)

  • Yang, J.S.;Seong, H.Y.;Keum, M.J.;Son, I.H.;Shin, S.K.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering(FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of $O_2$ gas and substrate temperature. When the $O_2$ gas rate of 0.3 and substrate temperature $200^{\circ}C$, ZnO:Al thin film had strongly oriented c-axis and lower resistivity( < $10^{-4}{\Omega}-cm$ ).

  • PDF

Plasma Facing Material 흡착기체의 정량적 분석을 위한 Thermal Desorption Analyzer (TDA) 개념 설계

  • Kim, Hui-Su;On, Yeon-Gil;Lee, Seok-Gwan;Choe, Min-Sik;No, Seung-Jeong;Gwon, Jin-Jung;Park, Jun-Gyu;Lee, Cheol-Ui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.513-513
    • /
    • 2012
  • 핵 융합로의 대면재질(Plasma Facing Material; PFM)은 고온의 플라즈마와 고 에너지의 이온들에 지속적으로 노출 된다. 특히 PFM은 흡착되는 기체 등에 의한 부식과 변형이 발생할 수 있다. 현재 핵 융합로 내부의 PFM으로 고려되고 있는 재질 중 하나인 고순도 탄소타일의 경우 고온의 수소동위원소 플라즈마에 직접적으로 노출되므로 이에 의한 탄소타일에 흡착되는 수소 등의 기체에 대한 정량적인 분석방법이 필요하다. 본 연구는 고순도 탄소타일 등과 같은 플라즈마 대면재료에 흡착되어 있는 물질의 정량적 분석이 가능한 TDA (Thermal Desorption Analyzer)의 개념 설계에 관한 것이다. TDA는 고온 가열($800^{\circ}C$ 이상) 및 시료 장착부 및 초고진공(~10-9 torr) 및 측정부의 두 부분으로 구성 하였다. TDA 설계시 고온 가열 및 시료 장착부는 시료 내부에 흡착되어 있는 기체의 효과적 탈착을 위한 가열 및 시료의 모양에 영향을 받지 않는 장착방법, 시료 장착부의 outgassing rate를 최소화 하는 재질 선정 등을 고려하였으며, 초고진공(~10-9 torr) 및 측정부는 초고진공 유지방법, 터보펌프 배기속도 실측을 위한 구조, 진공측정 ion 게이지, 잔류가스분석기(Residual Gas Analyzer)의 최적위치 설정 등을 고려하여 설계하였다. 개념 설계된 TDA에 대하여 발표하고자 한다.

  • PDF

Crystallograpic Characteristic of $Co_{77}Cr_{20}Ta_{3}$ Thin Films by Two-Step Sputtering (Two-Step 스퍼터링 법에 의한 $Co_{77}Cr_{20}Ta_{3}$ 박막의 결정학적 특성)

  • Park, Won-Hyo;Lee, Deok-Jin;Park, Yong-Seo;Choi, Hyung-Wook;Son, In-Hwan;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.103-106
    • /
    • 2002
  • We prepared $Co_{77}Cr_{20}Ta_{3}$ thin film with Facing Targets Sputtering Apparatus. which can deposit a high quality thin film CoCrTa magnetic layer for Perpendicular magnetic recording media. In order to obtain Good Crystal orientation of CoCrTa thin films. We prepared Thin Films on slide glass substrate. The thickness of Buffer-layer were varied from 10 to 50 nm and Magnetic layer thickness fixed 100[nm]. input current was varied from 0.2[A] to 0.5[A]. Substrate temperature was varied from room temperature to ${250^{\circ}C}$ respectively. The crystal orientation of the CoCrTa film were examined with XRD. Introduce Buffer-layer thin films showed improvement of dispersion angle of c-axis orientation (${\Delta\theta}_{50}$).

  • PDF

Properties of IZTO Thin Film prepared by the Hetero-Target sputtering system (ITO-IZO 이종 타겟 이용한 Indium Zinc Tin Oxide(IZTO)박막의 특성)

  • Kim, Dae-Hyun;Rim, You-Seong;Jang, Kyung-Uk;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.439-440
    • /
    • 2008
  • Indium Zinc Tin Oxide (IZTO) thin films for transparent thin film transistor (TTFT) were deposited on glass substrate at room temperature by facing targets sputtering (FTS). The FTS system was designed to array two targets facing each other and forms the high- density plasma between. Two different kinds of targets were installed on FTS system. One is ITO ($In_2O_3$ 90wt.%, $SnO_2$ 10wt.%), the other is IZO($In_2O_3$ 90wt%, ZnO 10wt%). The conductive and optical properties of IZTO thin film is determined depending on variation of DC power and working pressure. Therefore, IZTO thin films were prepared with different DC power and working pressure. As-deposited IZTO thin films were investigated by a UV/VIS spectrometer, an X-ray diffractometer (XRD), a scanning electron microscopy (SEM), a Hall Effect measurement system. As a result, all IZTO thin films deposited on glass substrate showed over 80% of transmittance in visible range (400~800 nm) at $O_2$ gas flow rate. We could obtain IZTO thin films with the lowest resistivity $5.67\times10^{-4}$ [$\Omega{\cdot}cm$] at $O_2$ gas flow rate 0.4 [sccm).

  • PDF

A Study on pricess characteristics of $ZrO_2$ films prepared on poly-ethlene naphthalate by using Facing tagets sputtering system (대향타겟식 스퍼터링 방법에 의해 PEN 기판위에 성막된 $ZrO_2$ 박막의 공정 특성에 관한 연구)

  • Cho, Do-Hyun;Kwon, Oh-Jung;Wang, Tae-Hyun;Kim, Ji-Hwan;Park, Sung-Hwan;Hong, Woo-Pyo;Kim, Hwa-Min;Kim, Jong-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.423-424
    • /
    • 2008
  • A facing target sputtering (FTS) equiment is fabricated and its process characteristics are investigated to search for the possibility of applications to film passivation system for organic light emitting diodes (OLEDs). We report that the FTS system can prepare a high quality $ZrO_2$ films with a dense micro structure and an excellent uniformity less than 5% and a high transmittance over an average 80% in the visible range. We suggest that the FTS is one of the suitable deposition techniques for the thin film passivation layer of OLEDs and the gas barrier layer of polymer substrate.

  • PDF

Preparation of ITO Thin Films by FTS{Facing Targets Sputtering) Method (FTS법을 이용한 ITO박막의 제작)

  • Kim, Geon-Hi;Keum, Min-Jong;Kim, Han-Ki;Son, In-Hwan;Jang, Kyung-Wook;Lee, Won-Jae;Choi, Hyung-Wook;Park, Yong-Seo;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1230-1233
    • /
    • 2004
  • The ITO thin films were prepared by the FTS(Facing Targets Sputtering) system. The ITO thin films are deposited by changing the input current and working gas pressure. Then, electric characteristics, transmittance and surface roughness of ITO thin films were measured by Hall effect measurement, UV-VIS spectrometer and AFM. As a result, the ITO thin film was fabricated with resistivity 6xl0$^{-4}$ Ωㆍcm, carrier mobility 52.11 $\textrm{cm}^2$/Vㆍsec, carrier concentration 1.72 x $10^{20}$ $cm^{-3}$ transmittance over 85 % of ITO film at working gas pressure 1 mTorr and input current 0.6 A.

Characteristics of ITO films grown by linear facing target sputtering (FTS) and OLEDs properties fabricated on FTS-grown ITO anode (선형 대향 타겟 스퍼터를 이용하여 제작한 ITO 박막의 특성과 이를 이용하여 제작한 유기발광소자 특성)

  • Kim, Han-Ki;Moon, Jong-Min;Kim, Ji-Hwim;Kim, Jang-Joo;Kang, Jae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.401-402
    • /
    • 2007
  • The preparation and characteristics of ITO anode films grown using a linear facing target sputtering (FTS) technique for use in organic light emitting diodes (OLED) and flexible OLED is described. The electrical, optical, and work function of the ITO anode, which was prepared by linear FTS at room temperature, were comparable to those of commercial ITO anode films. In particular, linear FTS-grown ITO films shows very smooth surface without defects such as pin hole and cracks due to low substrate temperature. Furthermore OLED with the linear FTS-grown ITO anode film shows comparable electrical and optical properties to those of OLED with the commercial crystalline-ITO anode film. This suggested that linear FTS is promising thin film technology for preparing high quality anode film in OLEDs and flexible OLEDs.

  • PDF

Properties of AZO/Ag/AZO Multilayer Thin Film Deposited on Polyethersulfone Substrate

  • Jung, Yu Sup;Park, Yong Seo;Kim, Kyung Hwan;Lee, Won-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.9-11
    • /
    • 2013
  • The AZO/Ag/AZO multilayer films were deposited on polyethersulfone (PES) substrate by using facing target sputtering methods at room temperature. The AZO/Ag/AZO multilayer films with polymer substrate had advantages, such as low sheet resistance, high optical transmittance in visible range and stable mechanical properties. From the results, the AZO/Ag/AZO multilayer films (50/12/50 nm) demonstrated a sheet resistance of 11 ${\Omega}/{\square}$ and average transmittance of 87% in visible range (wavelength of 380-770 nm). Moreover, the multilayer showed stable mechanical properties compared to the single-layered AZO sample during the bending test due to the existence of the ductile Ag metal layer.