• Title/Summary/Keyword: Facility safety design

Search Result 508, Processing Time 0.028 seconds

A Study on the Research Plan for R&D Long-term Load-map Design in the Facility Disaster on response of the changing Disaster Environment (재난환경변화에 대응한 인적재난 R&D중장기 로드맵 수립 기획연구)

  • Lee, Tae Shik;Seok, Geum Cheol;An, Jae Woo;Song, Cheol Ho;Cheung, Chong Soo;Lee, Young Jae;Cho, Won Cheol
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • This research has been shown the Research Plan for R&D Long-term Load-map Design in the Facility Disaster on response of the changing Disaster Environment, Showing the Strategy for the extending investment method of the technical development and related on that the advanced nation's technical level gap is minimized in the same area, Designing for the business' high-level, long-term load-map and the core driving strategy of the safety technology development business in the facility disaster, RFP Documentation on the core driving Business and the detailed driving Issue. This research has been resulted the three lists, trend analysis and Vision of the Technology Research Development (R&D) of the Safety Technology Area in domestic and foreign, the Responding Technology Predict and the Extended Research Strategy of the Next Generation Safety Technology in the facility Disaster, long-mid Term Road-Map of the Safety Technology in the facility Disaster, finally the Action Issue's RFP of the Safety Technology in the facility Disaster.

Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

  • Bae, Hwang;Kim, Dong Eok;Ryu, Sung-Uk;Yi, Sung-Jae;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.968-978
    • /
    • 2017
  • Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal-hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

Development of Severity Model for Elderly Pedestrian Accidents Considering Urban Facility Factor (도시 시설 특성을 반영한 고령 보행자의 사고 심각도 모형 개발)

  • Choi, Sung Taek;Lee, Hyang Sook;Choo, Sang Ho;Kim, Su Jae
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.94-103
    • /
    • 2015
  • This study analyzes the influence factors on elderly pedestrian accident. Elderly people are easy to be badly injured by car accidents compared to younger people. Therefore, various plans and measures are required to protect elderly pedestrian from accidents. However, pedestrian accidents studies only focused on microscopic factors such as attribute of driver, pedestrian, road design. In order to prevent pedestrian accident and reduce the severity of the accident, not only microscopic factors but macroscopic variables such as urban planning and facility should be considered. In this regard, this study develops an ordered probit model introduced the characteristics of urban facility which were not considered in the previous studies. The result shows that there is higher level of accident severity in such areas as large commercial area, well-developed area with transportation infrastructure service and non-pedestrian safety zone. Thus, various and appropriate countermeasures should be prepared in order that pedestrian accident can be prevented in the areas mentioned above. In addition to the aforementioned variables, it is revealed that other variables including vehicle speed, gender and age of pedestrian, weather condition, type of vehicle, etc. partly affect the severity of pedestrian accident.

Hot Cell Facility for Demonstration of Advanced Spent Fuel Conditioning Process (사용후핵연료 차세대관리 종합공정 실증시설)

  • 정원명;구정회;조일제;국동학;이은표;백상열;이규일;유길성;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.331-336
    • /
    • 2003
  • The advanced spent fuel conditioning process(ACP) was proposed to reduce considerably the overall volume and radioactivity for effective management of the PWR spent fuel in respects on safety and economy. The ACP is under research and development, and have scheduled to perform hot test for demonstration of the ACP after several years. For hot test, hot cell facility of ${\alpha}{\gamma}$ type possess conservative safety is required essentially. A existing hot cell of ${\beta}{\gamma}$ type will be refurbished to minimize construction expenditures of hot cell facility. In this study, the design requirements are established, and the process detail work flow was analysed for the optimum arrangement to ensure effective process operation in hot cell. And also, the basic and detail design of hot cell facility and process and safety analysis was peformed to secure conservative safety of hot cell facility and process.

  • PDF

A Study on Improvement of Safety Management of Low Voltage Electrical Equiment (일반용 저압전기설비의 안전등급제 도입에 관한 연구)

  • Jae-Phil Han;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.598-602
    • /
    • 2023
  • With the purpose of instilling an awareness of the safety of users of electrical equipment and inducing voluntary facility improvement through the safety rating system for general low voltage electrical equipment, simulation and field application of the safety rating of general low voltage electrical equipment were conducted. For the introduction and application of the safety rating system for general low-voltage electrical equipment, data related to domestic safety was investigated and analyzed, cases of introduction in other fields were reviewed, and for design, the 4M risk assessment method of the Korea Occupational Safety and Health Agency and the cases of safety index development in Korea were analyzed and standardized. Safety rating system simulations were conducted for general low-voltage electrical equipment, and problem improvement measures were prepared by analyzing the results through on-site verification and simulation applied to the initial design. Design standards for the introduction of the safety rating system for general low-voltage electrical equipment were prepared, and 394 youth training facilities were applied to the field to see if the design standards were practically applicable to the field. With the application of the safety rating system for low-voltage electrical equipment for general use, youth training facilities that had been classified as 'appropriate' were able to induce an upgrade to a higher level through voluntary facility improvement according to the application of grades (A to E). As a result of inducing voluntary repair projects based on the results of the 1st and 2nd inspection of youth training facilities, it was confirmed that 86 facilities received grade A, 225 facilities received grade B, and only 311 facilities received grade A to B out of a total of 394 facilities, and there was no grade E.

Study on Scaling Analysis and Design Methodology of Passive Injection Test Facility (피동 주입 시험 장치의 척도 해석 및 설계 방법론 연구)

  • Bae, Hwang;Lee, Minkyu;Ryu, Sung-Uk;Shin, Soo Jai;Kim, Young-In;Yi, Sung-Jae;Park, Hyun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.50-60
    • /
    • 2016
  • A design methodology of the modeled test facility to conserve an injection performance of a passive safety injection system is proposed. This safety injection system is composed of a core makeup tank and a safety injection tank. Individual tanks are connected with pressure balance line on the top side and injection line on the bottom side. It is important to conserve the scaled initial injection flow rate and total injection time since this system can be operated by small gravity head without any active pumps. Differential pressure distribution of the injection line induced by the gravity head is determined by the vertical length and elevation of each tank. However, the total injection time is adjustable by the flow resistance coefficient of the injection line. The scaling methodology for the tank and flow resistance coefficient is suggested. A key point of this test facility design is a scaling analysis for the flow resistance coefficient. The scaling analysis proposed on this paper is based on the volume scaling law with the same vertical length to the prototype and can be extended to a model with a reduced vertical length. A set of passive injection test were performed for the tanks with the same volume and the different length. The test results on the initial flow rate and total injection time showed the almost same injection characteristics and they were in good agreement with the design values.

A Design of Hoist Safety Diagnosis System Using Fuzzy Based Self Organizing Neural Network (SONN) (퍼지기반 SONN 알고리즘을 이용한 호이스트 안전 진단 시스템 설계에 관한 연구)

  • 김병석;나승훈;강경식
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.129-132
    • /
    • 1997
  • The effectiveness of an ensuring the facility safety depends on the ability to find abnormal part(s) and remove that part(s). This requires the knowledge of that machine and ability to recover that machine. In this paper, it is discribed how to design the fuzzy based self organizing neural network expert system in order to find syptom source(s).

  • PDF

Water-Simulant Facility Installation for the Sodium-Cooled Fast Reactor KALIMER-600 and Global Flow Measurement (소듐냉각고속로 KALIMER-600 축소 물모의 열유동 가시화 실험장치 구축 및 거시 유동장 특성 측정)

  • Cha, Jae-Eun;Kim, Seong-O
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.54-62
    • /
    • 2011
  • KAERI has developed a KALIMER-600 which is a pool-type sodium-cooled fast reactor with a 600MWe electric generation capacity. For a SFR development, one of the main topics is an enhancement of the reactor system safety. Therefore, we have a long-term plan to design the large sodium experimental facility to evaluate the reactor safety and component performance. In order to extrapolate a thermal hydraulic phenomena in a large sodium reactor, the thermal hydraulics phenomena is under investigation in a 1/$10^{th}$ water-simulant facility for the KALIMER-600. In this paper, we shortly described the experimental facility setup and the measurement of the isothermal global flow behavior. For the flow field measurement, the PIV method was used in a transparent Plexiglas reactor vessel model at around $20^{\circ}C$ water condition.

A Study on Noise in Waste Facilities (폐기물 소각시설 내부 소음에 관한 연구)

  • Seo, Byung-Suk;Park, Ro-Gook;Jeon, Yong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.2
    • /
    • pp.15-21
    • /
    • 2020
  • Industrial facilities need design to predict and reduce noise from design to prevent and reduce noise. The purpose of this study is to predict worker's environment and evaluate safety by analyzing noise inside underground blower room and air compressor room with fluid machinery in waste facility. This waste incineration facility was analyzed based on the ground floor, ground floor blower chamber, and air compressor chamber. The results of SPL(Sound Pressure Level) analysis at 1.5m away, which are frequently used to measure the SPL as a noise source, are as follows. SPL of basement level: 46.80[dB], SPL of ground layer: 48.57[dB]. As a result, it was expected that the noise level would be considerably lower than the 8 hours 50[dB] noise exposure per day.