• Title/Summary/Keyword: Facility Energy Data

Search Result 306, Processing Time 0.022 seconds

Evaluation of Occupational, Facility and Environmental Radiological Data From the Centralized Radioactive Waste Management Facility in Accra, Ghana

  • Gustav Gbeddy;Yaw Adjei-Kyereme;Eric T. Glover;Eric Akortia;Paul Essel;Abdallah M.A. Dawood;Evans Ameho;Emmanuel Aberikae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.371-381
    • /
    • 2023
  • Evaluating the effectiveness of the radiation protection measures deployed at the Centralized Radioactive Waste Management Facility in Ghana is pivotal to guaranteeing the safety of personnel, public and the environment, thus the need for this study. RadiagemTM 2000 was used in measuring the dose rate of the facility whilst the personal radiation exposure of the personnel from 2011 to 2022 was measured from the thermoluminescent dosimeter badges using Harshaw 6600 Plus Automated TLD Reader. The decay store containing scrap metals from dismantled disused sealed radioactive sources (DSRS), and low-level wastes measured the highest dose rate of 1.06 ± 0.92 µSv·h-1. The range of the mean annual average personnel dose equivalent is 0.41-2.07 mSv. The annual effective doses are below the ICRP limit of 20 mSv. From the multivariate principal component analysis biplot, all the personal dose equivalent formed a cluster, and the cluster is mostly influenced by the radiological data from the outer wall surface of the facility where no DSRS are stored. The personal dose equivalents are not primarily due to the radiation exposures of staff during operations with DSRS at the facility but can be attributed to environmental radiation, thus the current radiation protection measures at the Facility can be deemed as effective.

A Decision Support Model for Intelligent Facility Management through the Digital Transformation

  • Lee, Junsoo;Kim, Kang Hyun;Cha, Seung Hyun;Koo, Choongwan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.485-492
    • /
    • 2020
  • Information on the energy consumption of buildings that can be obtained through conventional methods is limited. Therefore, this study aims to develop a model that can support decision making about building facility management through digital transformation technologies. Through the IoT sensor, the building's energy data and indoor air quality data are collected, and the monitored data is visualized through the ELK Stack and produced as a dashboard. In addition, the target building is photographed with a 360-degree camera and maps using a tool to create a 360-degree tour. Using such digital transformation technologies, users of buildings can obtain various information in real time without visiting buildings directly. This can lead to changes in actions or actions for building management, supporting facility management decisions, and consequently reducing building energy consumption.

  • PDF

INITIAL ESTIMATION OF THE RADIONUCLIDES IN THE SOIL AROUND THE 100 MEV PROTON ACCELERATOR FACILITY OF PEFP

  • An, So-Hyun;Lee, Young-Ouk;Cho, Young-Sik;Lee, Cheol-Woo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.747-752
    • /
    • 2007
  • The Proton Engineering Frontier Project (PEFP) has designed and developed a proton linear accelerator facility operating at 100 MeV - 20 mA. The radiological effects of such a nuclear facility on the environment are important in terms of radiation safety. This study estimated the production rates of radionuclides in the soil around the accelerator facility using MCNPX. The groundwater migration of the radioisotopes was also calculated using the Concentration Model. Several spallation reactions have occurred due to leaked neutrons, leading to the release of various radionuclides into the soil. The total activity of the induced radionuclides is approximately $2.98{\times}10^{-4}Bq/cm^3$ at the point of saturation. $^{45}Ca$ had the highest production rate with a specific activity of $1.78{\times}10^{-4}Bq/cm^3$ over the course of one year. $^3H$ and $^{22}Na$ are usually considered the most important radioisotopes at nuclear facilities. However, only a small amount of tritium was produced around this facility, as the energy of most neutrons is below the threshold of the predominant reactions for producing tritium: $^{16}O(n,\;X)^3H$ and $^{28}Si(n,X)^3H$ (approximately 20 MeV). The dose level of drinking water from $^{22}Na$ was $1.48{\times}10^{-5}$ pCi/ml/yr, which was less than the annual intake limit in the regulations.

A Communication Method Between Distributed Control System and Function Test Facility Using TCP/IP and Shared Memory

  • Kim, Jung-Soo;Jung, Chul-Hwan;Kim, Jung-Taek;Lee, Dong-Young;Ham, Chang-Sik
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.298-307
    • /
    • 1998
  • In order to design mutual communication between a distributed control system and a function test facility, we used the Inter-Process Communication(IPC) in two systems and Transmission Control Protocol/Internet Protocol(TCP/IP) protocol. The data from the function test facility are put in the shared memory using an IPC, which is then accessed by the distributed control system through an Application Program Interface(API). The server in the function test facility includes two processes(one for sending and one for receiving), which are generated by the fork function from the client signal. The client in the distributed control system includes two separate programs(one for receiving and one for sending).

  • PDF

Detailed Analysis of the KAERI nTOF Facility

  • Kim, Jong Woon;Lee, Young-Ouk
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.141-147
    • /
    • 2016
  • Background: A project for building a neutron time-of-flight (nTOF) facility is progressing. We expect that the construction will start in early 2016. Before that, a detailed simulation based on the current architectural drawings was performed to optimize the performance of our facility. Materials and Methods: Currently, several parts had been modified or changed from the original design to reflect requirements such as the layout of the electron beam line, shape of the vacuum chamber producing a neutron beam, and the underground layout of the nTOF facility. Detailed analysis for these modifications has been done with MCNP simulation. Results and Discussion: An overview of our photo-neutron source and KAERI nTOF facility were introduced. The numerical simulations for heat deposition, source term, and radiation shielding of KAERI nTOF facility were performed and the results are discussed. Conclusion: We are expecting that the construction of the KAERI nTOF facility will start in early 2016, and these results will be used as basic data.

A Development of Real-time Energy Usage Data Collection and Analysis System based on the IoT (IoT 기반의 실시간 에너지 사용 데이터 수집 및 분석 시스템 개발)

  • Hwang, Hyunsuk;Seo, Youngwon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.3
    • /
    • pp.366-373
    • /
    • 2019
  • The development of monitoring and analysis systems to increase productivity while saving energy is needed as a method to reduce huge amount of energy consumed in the process of producing large forged products. In this paper, we propose a system to monitor and analyze energy usage in real-time collected from gas-meter, wattmeter, and thermometer based on IoT installed in forging factories. The system consists of a data collection server for collecting and processing data from IoT- based platform and existing SCADA equipment and ERP/MES system in forging factories, and an application server for providing services to users. To develop the system, the overall system structure is logically diagrammed, and the databases configuration and implementation modules to efficiently store and manage data are presented. In the future, the system will be utilized to reduce energy consumption by analyzing energy usage pattern and optimizing process works with real-time energy usage and production process data for each facility.

A FLOW AND PRESSURE DISTRIBUTION OF APR+ REACTOR UNDER THE 4-PUMP RUNNING CONDITIONS WITH A BALANCED FLOW RATE

  • Euh, D.J.;Kim, K.H.;Youn, Y.J.;Bae, J.H.;Chu, I.C.;Kim, J.T.;Kang, H.S.;Choi, H.S.;Lee, S.T.;Kwon, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.735-744
    • /
    • 2012
  • In order to quantify the flow distribution characteristics of APR+ reactor, a test was performed on a test facility, ACOP ($\underline{A}$PR+ $\underline{C}$ore Flow & $\underline{P}$ressure Test Facility), having a length scale of 1/5 referring to the prototype plant. The major parameters are core inlet flow and outlet pressure distribution and sectional pressure drops along the major flow path inside reactor vessel. To preserve the flow characteristics of prototype plant, the test facility was designed based on a preservation of major flow path geometry. An Euler number is considered as primary dimensionless parameter, which is conserved with a 1/40.9 of Reynolds number scaling ratio. ACOP simplifies each fuel assembly into a hydraulic simulator having the same axial flow resistance and lateral cross flow characteristics. In order to supply boundary condition to estimate thermal margins of the reactor, the distribution of inlet core flow and core exit pressure were measured in each of 257 fuel assembly simulators. In total, 584 points of static pressure and differential pressures were measured with a limited number of differential pressure transmitters by developing a sequential operation system of valves. In the current study, reactor flow characteristics under the balanced four-cold leg flow conditions at each of the cold legs were quantified, which is a part of the test matrix composing the APR+ flow distribution test program. The final identification of the reactor flow distribution was obtained by ensemble averaging 15 independent test data. The details of the design of the test facility, experiment, and data analysis are included in the current paper.

Nutritional status of Korean elderly with dementia in a long-term care facility in Hongseong

  • Lee, Ji-Yeon;Hyun, Yeong-Soon;Kim, Hee-Seon
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.32-40
    • /
    • 2019
  • BACKGOUND/OBJECTIVES: This study investigated nutritional status of the elderly with dementia in a care facility with the aim of improving the meal quality of the facility. SUBJECTS/METHODS: Data were collected from 30 dementia patients aged more than 65 years in a long-term care facility in Hongseong. The data were obtained from questionnaires and medical records. The food intake data was obtained using food photographs and the nutrient intakes were calculated using the CAN-Pro 5.0. The data were compared with the dietary reference intakes for Koreans (KDRIs). The nutrient density, diet quality such as nutrient adequacy ratio (NAR), mean adequacy ratio (MAR), and index of nutritional quality (INQ), as well as dietary diversity score (DDS) were evaluated. The data were analyzed using SPSS statistical programs. RESULTS: The average daily energy intakes for men and women were much lower than the estimated energy requirements of the KDRIs. The average intakes of energy and most nutrients in the general diet group were significantly higher than those of the other two groups. Significant differences in diet quality and diet diversity were observed according to the meal type groups. The NARs of some minerals (calcium, iron, and zinc) and vitamins (vitamin $B_6$ and folic acid) were less than 0.5 in all study groups. The NARs of protein, iron and MAR of the general diet group were significantly higher than those of the liquid diet group. The DDS scores of meats, fruits and diary food group were very low in all meal type groups, meaning that the diet qualities of the study subjects were not appropriate in all meal type groups. CONCLUSIONS: The food intakes of the study groups showed some limitations by a direct comparison with KDRIs because of the very low physical activities of the study subjects. The diet quality and diet diversity indices suggest the need for improvements in the nutritional quality in all types of diet. Overall, new intervention strategies targeting facility residents with dementia in Korea are needed as soon as possible.

A Design of PWR Hydraulic Test Facility at KAERI

  • Oh, Dong-Seok;Shin, Chang-Whan;In, Wang-Kee;Chun, Tae-Hyun;Jung, Yeun-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.13-14
    • /
    • 2005
  • KAERI is performing a project on out-pile test technology development for a full scale PWR fuel assembly. We have introduced the hydraulic test facility, a test assembly, test parameters, test methods, and a data acquisition system. The start up test will be in the middle of March 2005 and the main test will be accomplished by the end of 2006. The established test facility and measuring technique will contribute to the satisfaction of domestic needs for the design verification to improve the reliability of a PWR plant operation.

  • PDF

Development of Test Facility for Micro Gas Turbine (마이크로 가스터빈 시험 장치 개발)

  • Lim, Hyung-Soo;Choi, Bum-Seog;Park, Moo-Ryong;Hwang, Soon-Chan;Park, Jun-Young;Seo, Jeongmin;Bang, Je-Sung;Lim, Young-Chul;Oh, In-Kyun;Kim, Byung Ok;Cho, Ju Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.42-48
    • /
    • 2015
  • To improve the core technology of the micro gas turbine, the performance test facility was developed. This paper is focusing on the explanation of the characteristics of micro gas turbine and its assist devices. Major part of micro gas turbine were radial type of compressor, annular type of combustor, radial type of turbine, thrust foil bearing, radial foil bearing and generator. The assist devices were consist of exhaust duct, inverter, data acquisition system, load bank and test cell. Before building up the test facility, the component test was previously conducted to confirm the component performance. After the test facility was prepared, the motoring test was conducted to investigate the rotor dynamic characteristics of the micro gas turbine. Also, the part load performance test was performed. With a developed micro gas turbine test facility, the improved core technology about the micro gas turbine can be suggested to the related industries.