• Title/Summary/Keyword: Facial feature

Search Result 513, Processing Time 0.034 seconds

Recognition and Generation of Facial Expression for Human-Robot Interaction (로봇과 인간의 상호작용을 위한 얼굴 표정 인식 및 얼굴 표정 생성 기법)

  • Jung Sung-Uk;Kim Do-Yoon;Chung Myung-Jin;Kim Do-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.255-263
    • /
    • 2006
  • In the last decade, face analysis, e.g. face detection, face recognition, facial expression recognition, is a very lively and expanding research field. As computer animated agents and robots bring a social dimension to human computer interaction, interest in this research field is increasing rapidly. In this paper, we introduce an artificial emotion mimic system which can recognize human facial expressions and also generate the recognized facial expression. In order to recognize human facial expression in real-time, we propose a facial expression classification method that is performed by weak classifiers obtained by using new rectangular feature types. In addition, we make the artificial facial expression using the developed robotic system based on biological observation. Finally, experimental results of facial expression recognition and generation are shown for the validity of our robotic system.

Robust Facial Expression Recognition Based on Local Directional Pattern

  • Jabid, Taskeed;Kabir, Md. Hasanul;Chae, Oksam
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.784-794
    • /
    • 2010
  • Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.

A Study on Local Micro Pattern for Facial Expression Recognition (얼굴 표정 인식을 위한 지역 미세 패턴 기술에 관한 연구)

  • Jung, Woong Kyung;Cho, Young Tak;Ahn, Yong Hak;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.14 no.5
    • /
    • pp.17-24
    • /
    • 2014
  • This study proposed LDP (Local Directional Pattern) as a new local micro pattern for facial expression recognition to solve noise sensitive problem of LBP (Local Binary Pattern). The proposed method extracts 8-directional components using $m{\times}m$ mask to solve LBP's problem and choose biggest k components, each chosen component marked with 1 as a bit, otherwise 0. Finally, generates a pattern code with bit sequence as 8-directional components. The result shows better performance of rotation and noise adaptation. Also, a new local facial feature can be developed to present both PFF (permanent Facial Feature) and TFF (Transient Facial Feature) based on the proposed method.

Comparison of Computer and Human Face Recognition According to Facial Components

  • Nam, Hyun-Ha;Kang, Byung-Jun;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • Face recognition is a biometric technology used to identify individuals based on facial feature information. Previous studies of face recognition used features including the eye, mouth and nose; however, there have been few studies on the effects of using other facial components, such as the eyebrows and chin, on recognition performance. We measured the recognition accuracy affected by these facial components, and compared the differences between computer-based and human-based facial recognition methods. This research is novel in the following four ways compared to previous works. First, we measured the effect of components such as the eyebrows and chin. And the accuracy of computer-based face recognition was compared to human-based face recognition according to facial components. Second, for computer-based recognition, facial components were automatically detected using the Adaboost algorithm and active appearance model (AAM), and user authentication was achieved with the face recognition algorithm based on principal component analysis (PCA). Third, we experimentally proved that the number of facial features (when including eyebrows, eye, nose, mouth, and chin) had a greater impact on the accuracy of human-based face recognition, but consistent inclusion of some feature such as chin area had more influence on the accuracy of computer-based face recognition because a computer uses the pixel values of facial images in classifying faces. Fourth, we experimentally proved that the eyebrow feature enhanced the accuracy of computer-based face recognition. However, the problem of occlusion by hair should be solved in order to use the eyebrow feature for face recognition.

Recognition of Hmm Facial Expressions using Optical Flow of Feature Regions (얼굴 특징영역상의 광류를 이용한 표정 인식)

  • Lee Mi-Ae;Park Ki-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.570-579
    • /
    • 2005
  • Facial expression recognition technology that has potentialities for applying various fields is appling on the man-machine interface development, human identification test, and restoration of facial expression by virtual model etc. Using sequential facial images, this study proposes a simpler method for detecting human facial expressions such as happiness, anger, surprise, and sadness. Moreover the proposed method can detect the facial expressions in the conditions of the sequential facial images which is not rigid motion. We identify the determinant face and elements of facial expressions and then estimates the feature regions of the elements by using information about color, size, and position. In the next step, the direction patterns of feature regions of each element are determined by using optical flows estimated gradient methods. Using the direction model proposed by this study, we match each direction patterns. The method identifies a facial expression based on the least minimum score of combination values between direction model and pattern matching for presenting each facial expression. In the experiments, this study verifies the validity of the Proposed methods.

Facial Feature Tracking Using Adaptive Particle Filter and Active Appearance Model (Adaptive Particle Filter와 Active Appearance Model을 이용한 얼굴 특징 추적)

  • Cho, Durkhyun;Lee, Sanghoon;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.104-115
    • /
    • 2013
  • For natural human-robot interaction, we need to know location and shape of facial feature in real environment. In order to track facial feature robustly, we can use the method combining particle filter and active appearance model. However, processing speed of this method is too slow. In this paper, we propose two ideas to improve efficiency of this method. The first idea is changing the number of particles situationally. And the second idea is switching the prediction model situationally. Experimental results is presented to show that the proposed method is about three times faster than the method combining particle filter and active appearance model, whereas the performance of the proposed method is maintained.

A Facial Animation System Using 3D Scanned Data (3D 스캔 데이터를 이용한 얼굴 애니메이션 시스템)

  • Gu, Bon-Gwan;Jung, Chul-Hee;Lee, Jae-Yun;Cho, Sun-Young;Lee, Myeong-Won
    • The KIPS Transactions:PartA
    • /
    • v.17A no.6
    • /
    • pp.281-288
    • /
    • 2010
  • In this paper, we describe the development of a system for generating a 3-dimensional human face using 3D scanned facial data and photo images, and morphing animation. The system comprises a facial feature input tool, a 3-dimensional texture mapping interface, and a 3-dimensional facial morphing interface. The facial feature input tool supports texture mapping and morphing animation - facial morphing areas between two facial models are defined by inputting facial feature points interactively. The texture mapping is done first by means of three photo images - a front and two side images - of a face model. The morphing interface allows for the generation of a morphing animation between corresponding areas of two facial models after texture mapping. This system allows users to interactively generate morphing animations between two facial models, without programming, using 3D scanned facial data and photo images.

Local Feature Based Facial Expression Recognition Using Adaptive Decision Tree (적응형 결정 트리를 이용한 국소 특징 기반 표정 인식)

  • Oh, Jihun;Ban, Yuseok;Lee, Injae;Ahn, Chunghyun;Lee, Sangyoun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.2
    • /
    • pp.92-99
    • /
    • 2014
  • This paper proposes the method of facial expression recognition based on decision tree structure. In the image of facial expression, ASM(Active Shape Model) and LBP(Local Binary Pattern) make the local features of a facial expressions extracted. The discriminant features gotten from local features make the two facial expressions of all combination classified. Through the sum of true related to classification, the combination of facial expression and local region are decided. The integration of branch classifications generates decision tree. The facial expression recognition based on decision tree shows better recognition performance than the method which doesn't use that.

Facial Feature Tracking from a General USB PC Camera (범용 USB PC 카메라를 이용한 얼굴 특징점의 추적)

  • 양정석;이칠우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.412-414
    • /
    • 2001
  • In this paper, we describe an real-time facial feature tracker. We only used a general USB PC Camera without a frame grabber. The system has achieved a rate of 8+ frames/second without any low-level library support. It tracks pupils, nostrils and corners of the lip. The signal from USB Camera is YUV 4:2:0 vertical Format. we converted the signal into RGB color model to display the image and We interpolated V channel of the signal to be used for extracting a facial region. and we analysis 2D blob features in the Y channel, the luminance of the image with geometric restriction to locate each facial feature within the detected facial region. Our method is so simple and intuitive that we can make the system work in real-time.

  • PDF

Feature Detection and Simplification of 3D Face Data with Facial Expressions

  • Kim, Yong-Guk;Kim, Hyeon-Joong;Choi, In-Ho;Kim, Jin-Seo;Choi, Soo-Mi
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.791-794
    • /
    • 2012
  • We propose an efficient framework to realistically render 3D faces with a reduced set of points. First, a robust active appearance model is presented to detect facial features in the projected faces under different illumination conditions. Then, an adaptive simplification of 3D faces is proposed to reduce the number of points, yet preserve the detected facial features. Finally, the point model is rendered directly, without such additional processing as parameterization of skin texture. This fully automatic framework is very effective in rendering massive facial data on mobile devices.