• Title/Summary/Keyword: Facial Region Tracking

Search Result 32, Processing Time 0.029 seconds

Eye Tracking Using Neural Network and Mean-shift (신경망과 Mean-shift를 이용한 눈 추적)

  • Kang, Sin-Kuk;Kim, Kyung-Tai;Shin, Yun-Hee;Kim, Na-Yeon;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • In this paper, an eye tracking method is presented using a neural network (NN) and mean-shift algorithm that can accurately detect and track user's eyes under the cluttered background. In the proposed method, to deal with the rigid head motion, the facial region is first obtained using skin-color model and con-nected-component analysis. Thereafter the eye regions are localized using neural network (NN)-based tex-ture classifier that discriminates the facial region into eye class and non-eye class, which enables our method to accurately detect users' eyes even if they put on glasses. Once the eye region is localized, they are continuously and correctly tracking by mean-shift algorithm. To assess the validity of the proposed method, it is applied to the interface system using eye movement and is tested with a group of 25 users through playing a 'aligns games.' The results show that the system process more than 30 frames/sec on PC for the $320{\times}240$ size input image and supply a user-friendly and convenient access to a computer in real-time operation.

Performance Evaluation Method of User Identification and User Tracking for Intelligent Robots Using Face Images (얼굴영상을 이용한 지능형 로봇의 개인식별 및사용자 추적 성능평가 방법)

  • Kim, Dae-Jin;Park, Kwang-Hyun;Hong, Ji-Man;Jeong, Young-Sook;Choi, Byoung-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.201-209
    • /
    • 2009
  • In this paper, we deal with the performance evaluation method of user identification and user tracking for intelligent robots using face images. This paper shows general approaches for standard evaluation methods to improve intelligent robot systems as well as their algorithms. The evaluation methods proposed in this paper can be combined with the evaluation methods for detection algorithms of face region and facial components to measure the overall performance of face recognition in intelligent robots.

  • PDF

A New Eye Tracking Method as a Smartphone Interface

  • Lee, Eui Chul;Park, Min Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.834-848
    • /
    • 2013
  • To effectively use these functions many kinds of human-phone interface are used such as touch, voice, and gesture. However, the most important touch interface cannot be used in case of hand disabled person or busy both hands. Although eye tracking is a superb human-computer interface method, it has not been applied to smartphones because of the small screen size, the frequently changing geometric position between the user's face and phone screen, and the low resolution of the frontal cameras. In this paper, a new eye tracking method is proposed to act as a smartphone user interface. To maximize eye image resolution, a zoom lens and three infrared LEDs are adopted. Our proposed method has following novelties. Firstly, appropriate camera specification and image resolution are analyzed in order to smartphone based gaze tracking method. Secondly, facial movement is allowable in case of one eye region is included in image. Thirdly, the proposed method can be operated in case of both landscape and portrait screen modes. Fourthly, only two LED reflective positions are used in order to calculate gaze position on the basis of 2D geometric relation between reflective rectangle and screen. Fifthly, a prototype mock-up design module is made in order to confirm feasibility for applying to actual smart-phone. Experimental results showed that the gaze estimation error was about 31 pixels at a screen resolution of $480{\times}800$ and the average hit ratio of a $5{\times}4$ icon grid was 94.6%.

Real Time System Realization for Binocular Eyeball Tracking Mouse (실시간 쌍안구 추적 마우스 시스템 구현에 관한 연구)

  • Ryu Kwang-Ryol;Choi Duck-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1671-1678
    • /
    • 2006
  • A real time system realization for binocular eyeball tracking mouse on the computer monitor being far from 30-40cm is presented in the paper. The processing for searching eyeball and tracking the cursor are that a facial image is acquired by the small CCD camera, convert it into binary image, search for the eye two using the five region mask method in the eye surroundings and the side four points diagonal positioning method is searched the each iris. The tracking cursor is matched by measuring the iris central moving position. The cursor controlling is achieved by comparing two related distances between the iris maximum moving and the cursor moving to calculate the moving distance from gazing position and screen. The experimental results show that the binocular eyeball mouse system is simple and fast to be real time.

Robot vision system for face tracking using color information from video images (로봇의 시각시스템을 위한 동영상에서 칼라정보를 이용한 얼굴 추적)

  • Jung, Haing-Sup;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.4
    • /
    • pp.553-561
    • /
    • 2010
  • This paper proposed the face tracking method which can be effectively applied to the robot's vision system. The proposed algorithm tracks the facial areas after detecting the area of video motion. Movement detection of video images is done by using median filter and erosion and dilation operation as a method for removing noise, after getting the different images using two continual frames. To extract the skin color from the moving area, the color information of sample images is used. The skin color region and the background area are separated by evaluating the similarity by generating membership functions by using MIN-MAX values as fuzzy data. For the face candidate region, the eyes are detected from C channel of color space CMY, and the mouth from Q channel of color space YIQ. The face region is tracked seeking the features of the eyes and the mouth detected from knowledge-base. Experiment includes 1,500 frames of the video images from 10 subjects, 150 frames per subject. The result shows 95.7% of detection rate (the motion areas of 1,435 frames are detected) and 97.6% of good face tracking result (1,401 faces are tracked).

A Real-time Interactive Shadow Avatar with Facial Emotions (감정 표현이 가능한 실시간 반응형 그림자 아바타)

  • Lim, Yang-Mi;Lee, Jae-Won;Hong, Euy-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.506-515
    • /
    • 2007
  • In this paper, we propose a Real-time Interactive Shadow Avatar(RISA) which can express facial emotions changing as response of user's gestures. The avatar's shape is a virtual Shadow constructed from the real-time sampled picture of user's shape. Several predefined facial animations overlap on the face area of the virtual Shadow, according to the types of hand gestures. We use the background subtraction method to separate the virtual Shadow, and a simplified region-based tracking method is adopted for tracking hand positions and detecting hand gestures. In order to express smooth change of emotions, we use a refined morphing method which uses many more frames in contrast with traditional dynamic emoticons. RISA can be directly applied to the area of interface media arts and we expect the detecting scheme of RISA would be utilized as an alternative media interface for DMB and camera phones which need simple input devices, in the near future.

  • PDF

Eye Location Algorithm For Natural Video-Conferencing (화상 회의 인터페이스를 위한 눈 위치 검출)

  • Lee, Jae-Jun;Choi, Jung-Il;Lee, Phill-Kyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3211-3218
    • /
    • 1997
  • This paper addresses an eye location algorithm which is essential process of human face tracking system for natural video-conferencing. In current video-conferencing systems, user's facial movements are restricted by fixed camera, therefore it is inconvenient to users. We Propose an eye location algorithm for automatic face tracking. Because, locations of other facial features guessed from locations of eye and scale of face in the image can be calculated using inter-ocular distance. Most previous feature extraction methods for face recognition system are approached under assumption that approximative face region or location of each facial feature is known. The proposed algorithm in this paper uses no prior information on the given image. It is not sensitive to backgrounds and lighting conditions. The proposed algorithm uses the valley representation as major information to locate eyes. The experiments have been performed for 213 frames of 17 people and show very encouraging results.

  • PDF

Technology Development for Non-Contact Interface of Multi-Region Classifier based on Context-Aware (상황 인식 기반 다중 영역 분류기 비접촉 인터페이스기술 개발)

  • Jin, Songguo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.175-182
    • /
    • 2020
  • The non-contact eye tracking is a nonintrusive human-computer interface providing hands-free communications for people with severe disabilities. Recently. it is expected to do an important role in non-contact systems due to the recent coronavirus COVID-19, etc. This paper proposes a novel approach for an eye mouse using an eye tracking method based on a context-aware based AdaBoost multi-region classifier and ASSL algorithm. The conventional AdaBoost algorithm, however, cannot provide sufficiently reliable performance in face tracking for eye cursor pointing estimation, because it cannot take advantage of the spatial context relations among facial features. Therefore, we propose the eye-region context based AdaBoost multiple classifier for the efficient non-contact gaze tracking and mouse implementation. The proposed method detects, tracks, and aggregates various eye features to evaluate the gaze and adjusts active and semi-supervised learning based on the on-screen cursor. The proposed system has been successfully employed in eye location, and it can also be used to detect and track eye features. This system controls the computer cursor along the user's gaze and it was postprocessing by applying Gaussian modeling to prevent shaking during the real-time tracking using Kalman filter. In this system, target objects were randomly generated and the eye tracking performance was analyzed according to the Fits law in real time. It is expected that the utilization of non-contact interfaces.

Integrated Approach of Multiple Face Detection for Video Surveillance

  • Kim, Tae-Kyun;Lee, Sung-Uk;Lee, Jong-Ha;Kee, Seok-Cheol;Kim, Sang-Ryong
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1960-1963
    • /
    • 2003
  • For applications such as video surveillance and human computer interface, we propose an efficiently integrated method to detect and track faces. Various visual cues are combined to the algorithm: motion, skin color, global appearance and facial pattern detection. The ICA (Independent Component Analysis)-SVM (Support Vector Machine based pattern detection is performed on the candidate region extracted by motion, color and global appearance information. Simultaneous execution of detection and short-term tracking also increases the rate and accuracy of detection. Experimental results show that our detection rate is 91% with very few false alarms running at about 4 frames per second for 640 by 480 pixel images on a Pentium IV 1㎓.

  • PDF

Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function (평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적)

  • Kim, Ki-Sang;Kim, Gye-Young;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, we proposed automatic face detection and tracking which is robustness in rotation. To detect a face image in complicated background and various illuminating conditions, we used face skin color detection. we used Harris corner detector for extract facial feature points. After that, we need to track these feature points. In traditional method, Lucas-Kanade feature tracker doesn't delete useless feature points by occlusion in current scene (face rotation or out of camera). So we proposed the estimation function, which delete useless feature points. The method of delete useless feature points is estimation value at each pyramidal level. When the face was occlusion, we deleted these feature points. This can be robustness to face rotation and out of camera. In experimental results, we assess that using estimation function is better than traditional feature tracker.