• Title/Summary/Keyword: Facial Features Detection

Search Result 138, Processing Time 0.026 seconds

Gaze Detection System using Real-time Active Vision Camera (실시간 능동 비전 카메라를 이용한 시선 위치 추적 시스템)

  • 박강령
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1228-1238
    • /
    • 2003
  • This paper presents a new and practical method based on computer vision for detecting the monitor position where the user is looking. In general, the user tends to move both his face and eyes in order to gaze at certain monitor position. Previous researches use only one wide view camera, which can capture a whole user's face. In such a case, the image resolution is too low and the fine movements of user's eye cannot be exactly detected. So, we implement the gaze detection system with dual camera systems(a wide and a narrow view camera). In order to locate the user's eye position accurately, the narrow view camera has the functionalities of auto focusing and auto panning/tilting based on the detected 3D facial feature positions from the wide view camera. In addition, we use dual R-LED illuminators in order to detect facial features and especially eye features. As experimental results, we can implement the real-time gaze detection system and the gaze position accuracy between the computed positions and the real ones is about 3.44 cm of RMS error.

Facial Feature Detection and Facial Contour Extraction using Snakes (얼굴 요소의 영역 추출 및 Snakes를 이용한 윤곽선 추출)

  • Lee, Kyung-Hee;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.7
    • /
    • pp.731-741
    • /
    • 2000
  • This paper proposes a method to detect a facial region and extract facial features which is crucial for visual recognition of human faces. In this paper, we extract the MER(Minimum Enclosing Rectangle) of a face and facial components using projection analysis on both edge image and binary image. We use an active contour model(snakes) for extraction of the contours of eye, mouth, eyebrow, and face in order to reflect the individual differences of facial shapes and converge quickly. The determination of initial contour is very important for the performance of snakes. Particularly, we detect Minimum Enclosing Rectangle(MER) of facial components and then determine initial contours using general shape of facial components within the boundary of the obtained MER. We obtained experimental results to show that MER extraction of the eye, mouth, and face was performed successfully. But in the case of images with bright eyebrow, MER extraction of eyebrow was performed poorly. We obtained good contour extraction with the individual differences of facial shapes. Particularly, in the eye contour extraction, we combined edges by first order derivative operator and zero crossings by second order derivative operator in designing energy function of snakes, and we achieved good eye contours. For the face contour extraction, we used both edges and grey level intensity of pixels in designing of energy function. Good face contours were extracted as well.

  • PDF

Appearance of nasopalatine duct cysts on dental magnetic resonance imaging using a mandibular coil: Two case reports with a literature review

  • Adib Al-Haj Husain ;Daphne Schonegg ;Silvio Valdec ;Bernd Stadlinger ;Marco Piccirelli ;Sebastian Winklhofer
    • Imaging Science in Dentistry
    • /
    • v.53 no.2
    • /
    • pp.161-168
    • /
    • 2023
  • Nasopalatine duct cysts (NPDCs), the most common non-odontogenic cysts of maxilla, are often incidental findings on diagnostic imaging. When symptomatic, they usually present as a painless swelling with possible fistula. Conventional radiography shows a round-to-ovoid or heart-shaped radiolucency between the roots of central maxillary incisors. While the radiographic features of NPDCs in X-ray-based modalities have been well described, their magnetic resonance imaging (MRI) features have rarely been reported. Developments in dental MRI in recent years and the introduction of various dental MRI protocols now allow a wide range of applications in dental medicine. MRI is becoming an important tool for the detection and diagnosis of incidental or non-incidental dentomaxillofacial cysts. This report presented and discussed the characteristics of 2 NPDC cases visualized on MRI using both conventional and newly implemented specific dental MRI protocols with a novel 15-channel mandibular coil, demonstrating the use of these protocols for radiation-free maxillofacial diagnoses.

Face Detection Using Facial Features and Color Information on Long Distance (얼굴의 특징과 색상 정보를 이용한 원거리 얼굴 검출)

  • Han, Sang-Il;Park, Sung-Jin;Cha, Hyung-Tai
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.175-177
    • /
    • 2005
  • 원거리에서 촬영된 얼굴영상은 극히 적은 정보만을 가지고 있기 때문에 얼굴 검출에 어려움이 따른다. 본 논문에서는 이런 원거리에서 촬영된 영상에서도 얼굴을 검출하는 알고리즘을 제한한다. 정규화한 얼굴 영역 후보의 각 화소에 대한 명암차를 이용하여 얼굴 특정 후보를 검출하고, 얼굴의 대표적 특징 요소인 눈과 코, 입 요소를 추출하여 최종 얼굴영역 판별을 한다. 제한된 알고리즘을 다양한 얼굴 영상에 대해 실험을 실시한 결과, 많은 환경 변수 및 다양한 얼굴영상에서의 적응성을 확인할 수 있었다.

  • PDF

Face Detection Using Facial Features and Brightness on Long Distance (얼굴 요소의 특징과 명암차를 이용한 원거리 얼굴 검출)

  • Han, Sang-Il;Park, Sung-Jin;Cha, Hyung-Tai
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.359-362
    • /
    • 2005
  • 본 논문에서는 원거리에서 촬영한 영상을 가지고 얼굴 인식의 전처리 과정인 얼굴 영역 검출에 관한 알고리즘을 제안하였다. 원거리에서 촬영된 영상은 얼굴에 대한 특징 정보가 부족하여 검출 및 판별이 어려웠으나 본 논문에서 제안한 알고리즘을 적용하면 적은 정보만을 가지고 얼굴 검출 및 판별이 가능하다. 제안된 알고리즘은 피부색에 대한 색상 정보와 명암 정보를 이용하여 얼굴 영역을 추출하였고, 추출된 얼굴 영역으로부터 눈, 코, 입뿐만 아니라 이마 영역도 검출함으로써 얼굴 검출 효율을 개선하였다.

  • PDF

Real Time Face Tracking Method based Random Regression Forest using Mean Shift (평균이동 기법을 이용한 랜덤포레스트 기반 실시간 얼굴 특징점 추적)

  • Zhang, Xingjie;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.89-90
    • /
    • 2017
  • 본 논문에서는 평균이동 (mean shift) 기법을 이용하여 랜덤포레스트 (random forest) 기반 실시간 얼굴 특징점 추적 (facial features tracking) 방법을 제안한다. 우선, 눈의 위치를 이용하여 검출된 얼굴영역을 적절한 크기와 위치로 개선하여 랜덤포레스트를 이용한 얼굴 특징점 추적 알고리즘이 받는, 얼굴검출 (face detection) 과정에 얻어지는 얼굴영역 상자 (face bounding box) 크기와 위치의 영향을 감소 하였다. 또한 랜덤포레스트의 얼굴 특징점 추정결과에서 추정평균 대신 평균이동기법을 이용하여 잘못된 추정결과들을 제거하고 제대로 된 추정결과만 사용하여 얼굴 특징점 검출 정확도를 개선하였다. 따라서 제안하는 방법들을 이용하여 기존의 랜덤포레스트 기반 얼굴 특징점 검출 기법의 성능을 제고하고 실시간으로 얼굴 특징점을 추적할 수 있다.

  • PDF

Human Head Mouse System Based on Facial Gesture Recognition

  • Wei, Li;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1591-1600
    • /
    • 2007
  • Camera position information from 2D face image is very important for that make the virtual 3D face model synchronize to the real face at view point, and it is also very important for any other uses such as: human computer interface (face mouth), automatic camera control etc. We present an algorithm to detect human face region and mouth, based on special color features of face and mouth in $YC_bC_r$ color space. The algorithm constructs a mouth feature image based on $C_b\;and\;C_r$ values, and use pattern method to detect the mouth position. And then we use the geometrical relationship between mouth position information and face side boundary information to determine the camera position. Experimental results demonstrate the validity of the proposed algorithm and the Correct Determination Rate is accredited for applying it into practice.

  • PDF

Iris detection using Hough transform and separable filter (허프 변환과 분리필터를 이용한 홍채 검출)

  • Kim, Tae-Woo;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.2
    • /
    • pp.3-11
    • /
    • 2010
  • In this paper we propose a new algorithm to detect the irises of both eyes from a human face. Using the separability filter, the algorithm first extracts blobs(intensity valleys) as the candidates for the irises. Next, for each pair of blobs, the algorithm computes a cost using Hough transform and separability filter to measure the fit of the pair of blobs to the image. And then, the algorithm selects a pair of blobs with the smallest cost as the irises of both eyes. As the result of the experiment using 150 faces images without spectacles, the success rate of the proposed algorithm was 97.3% for the best case and 95.3% for the worst case.

  • PDF

A Study on the Facal motion and for Detection of area Using Kalman Fillter algorithm (Facal motion 예측 및 영역 검출을 위한 칼만 필터 알고리즘)

  • Seok, Gyeong-Hyu;Park, Bu-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.973-980
    • /
    • 2011
  • In this paper, we gaze upon the movement faces the problem points are difficult to identify a user based on points and that corrective action is needed to solve the identification system is proposed a new eye. Kalman filter, the current head of the location information was used to estimate the future position in order to determine the authenticity of the face facial features and structural elements, the information and the processing time is relatively fast horizontal and vertical elements of the face using the histogram analysis to detect. And an infrared illuminator obtained by constructing a bright pupil effect in real-time detection of the pupil, the pupil was tracked - geulrinteu vectors are extracted.

Iris detection using Hough transform and separable filter (허프 변환과 분리필터를 이용한 홍채 검출)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.526-534
    • /
    • 2006
  • In this paper we propose a new algorithm to detect the irises of both eyes from a human face. Using the separability filter, the algorithm first extracts blobs(intensity valleys) as the candidates for the irises. Next, for each pair of blobs. the algorithm computes a cost usings Hough transform and separability later to measure the fit of the pair of blobs to the image. And then, the algorithm selects a pair of blobs with the smallest cost as the irises of both eyes. As the result of the experiment using 150 faces images without spectacles, the success rate of the proposed algorithm was 97.3% for the best case and 95.3% for the worst case.