• Title/Summary/Keyword: Facial Color Model

Search Result 72, Processing Time 0.025 seconds

Human Emotion Recognition based on Variance of Facial Features (얼굴 특징 변화에 따른 휴먼 감성 인식)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.79-85
    • /
    • 2017
  • Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.

  • PDF

Face Region Detection Algorithm using Euclidean Distance of Color-Image (칼라 영상에서 유클리디안 거리를 이용한 얼굴영역 검출 알고리즘)

  • Jung, Haing-sup;Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.79-86
    • /
    • 2009
  • This study proposed a method of detecting the facial area by calculating Euclidian distances among skin color elements and extracting the characteristics of the face. The proposed algorithm is composed of light calibration and face detection. The light calibration process performs calibration for the change of light. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. From the extracted facial area candidate, the eyes were detected in space C of color model CMY, and the mouth was detected in space Q of color model YIQ. From the extracted facial area candidate, the facial area was detected based on the knowledge of an ordinary face. When an experiment was conducted with 40 color images of face as input images, the method showed a face detection rate of 100%.

  • PDF

Skin Color Based Facial Features Extraction

  • Alom, Md. Zahangir;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.351-354
    • /
    • 2011
  • This paper discusses on facial features extraction based on proposed skin color model. Different parts of face from input image are segmented based on skin color model. Moreover, this paper also discusses on concept to detect the eye and mouth position on face. A height and width ratio (${\delta}=1.1618$) based technique is also proposed to accurate detection of face region from the segmented image. Finally, we have cropped the desired part of the face. This exactly exacted face part is useful for face recognition and detection, facial feature analysis and expression analysis. Experimental results of propose method shows that the proposed method is robust and accurate.

Efficient Face Detection using Adaboost and Facial Color (얼굴 색상과 에이다부스트를 이용한 효율적인 얼굴 검출)

  • Chae, Yeong-Nam;Chung, Ji-Nyun;Yang, Hyun-S.
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.7
    • /
    • pp.548-559
    • /
    • 2009
  • The cascade face detector learned by Adaboost algorithm, which was proposed by Viola and Jones, is state of the art face detector due to its great speed and accuracy. In spite of its great performance, it still suffers from false alarms, and more computation is required to reduce them. In this paper, we want to reduce false alarms with less computation using facial color. Using facial color information, proposed face detection model scans sub-window efficiently and adapts a fast face/non-face classifier at the first stage of cascade face detector. This makes face detection faster and reduces false alarms. For facial color filtering, we define a facial color membership function, and facial color filtering image is obtained using that. An integral image is calculated from facial color filtering image. Using this integral image, its density of subwindow could be obtained very fast. The proposed scanning method skips over sub-windows that do not contain possible faces based on this density. And the face/non-face classifier at the first stage of cascade detector rejects a non-face quickly. By experiment, we show that the proposed face detection model reduces false alarms and is faster than the original cascade face detector.

A Lip Detection Algorithm Using Color Clustering (색상 군집화를 이용한 입술탐지 알고리즘)

  • Jeong, Jongmyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.37-43
    • /
    • 2014
  • In this paper, we propose a robust lip detection algorithm using color clustering. At first, we adopt AdaBoost algorithm to extract facial region and convert facial region into Lab color space. Because a and b components in Lab color space are known as that they could well express lip color and its complementary color, we use a and b component as the features for color clustering. The nearest neighbour clustering algorithm is applied to separate the skin region from the facial region and K-Means color clustering is applied to extract lip-candidate region. Then geometric characteristics are used to extract final lip region. The proposed algorithm can detect lip region robustly which has been shown by experimental results.

Face and Its Components Extraction of Animation Characters Based on Dominant Colors (주색상 기반의 애니메이션 캐릭터 얼굴과 구성요소 검출)

  • Jang, Seok-Woo;Shin, Hyun-Min;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.93-100
    • /
    • 2011
  • The necessity of research on extracting information of face and facial components in animation characters have been increasing since they can effectively express the emotion and personality of characters. In this paper, we introduce a method to extract face and facial components of animation characters by defining a mesh model adequate for characters and by using dominant colors. The suggested algorithm first generates a mesh model for animation characters, and extracts dominant colors for face and facial components by adapting the mesh model to the face of a model character. Then, using the dominant colors, we extract candidate areas of the face and facial components from input images and verify if the extracted areas are real face or facial components by means of color similarity measure. The experimental results show that our method can reliably detect face and facial components of animation characters.

Development of Face Tracking System Using Skin Color and Facial Shape (얼굴의 색상과 모양정보를 이용한 조명 변화에 강인한 얼굴 추적 시스템 구현)

  • Lee, Hyung-Soo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.711-718
    • /
    • 2003
  • In this paper, we propose a robust face tracking algorithm. It is based on Condensation algorithm [7] and uses skin color and facial shape as the observation measure. It is hard to integrate color weight and shape weight. So we propose the method that has two separate trackers which uses skin color and facial shape as the observation measure respectively. One tracker tracks skin colored region and the other tracks facial shape. We used importance sampling technique to limit sampling region of two trackers. For skin-colored region tracker, we propose an adaptive color model to avoid the effect of illumination change. The proposed face tracker performs robustly in clutter background and in the illumination changes.

Facial Phrenology Analysis and Automatic Face Avatar Drawing System Based on Internet Using Facial Feature Information (얼굴특징자 정보를 이용한 인터넷 기반 얼굴관상 해석 및 얼굴아바타 자동생성시스템)

  • Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.8
    • /
    • pp.982-999
    • /
    • 2006
  • In this paper, we propose an automatic facial phrenology analysis and avatar drawing system based on internet using multi color information and face geometry. In the proposed system, we detect face using logical product of Cr and I which is a components of YCbCr and YIQ color model, respectively. And then, we extract facial feature using face geometry and analyze user's facial phrenology with the classification of each facial feature. And also, the proposed system can make avatar drawing automatically using extracted and classified facial features. Experimental result shows that proposed algorithm can analyze facial phrenology as well as detect and recognize user's face at real-time.

  • PDF

A Virtual Makeup Program Using Facial Feature Area Extraction Based on Active Shape Model and Modified Alpha Blending (ASM 기반의 얼굴 특징 영역 추출 및 변형된 알파 블렌딩을 이용한 가상 메이크업 프로그램)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1827-1835
    • /
    • 2010
  • In this paper, facial feature areas in user picture are created by facial feature points extracted by ASM(Active Shape Model). In a existing virtual make-up application, users manually select a few features that are exactly. Users are uncomfortable with this method. We propose a virtual makeup application using ASM that does not require user input. In order to express a natural makeup, the modified alpha blendings for each cosmetic are used to blend skin color with cosmetic color. The Virtual makeup application was implemented to apply Foundation, Blush, Lip Stick, Lip Liner, Eye Pencil, Eye Liner and Eye Shadow.

Multiple Face Segmentation and Tracking Based on Robust Hausdorff Distance Matching

  • Park, Chang-Woo;Kim, Young-Ouk;Sung, Ha-Gyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.632-635
    • /
    • 2003
  • This paper describes a system fur tracking multiple faces in an input video sequence using facial convex hull based facial segmentation and robust hausdorff distance. The algorithm adapts skin color reference map in YCbCr color space and hair color reference map in RGB color space for classifying face region. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, this algorithm computes displacement of the point set between frames using a robust hausdorff distance and the best possible displacement is selected. Finally, the initial face model is updated using the displacement. We provide an example to illustrate the proposed tracking algorithm, which efficiently tracks rotating and zooming faces as well as existing multiple faces in video sequences obtained from CCD camera.

  • PDF