• 제목/요약/키워드: Face-Milling

검색결과 124건 처리시간 0.027초

A Probabilistic Model for the Prediction of Burr Formation in Face Milling

  • Suneung Ahn
    • 산업경영시스템학회지
    • /
    • 제23권60호
    • /
    • pp.23-36
    • /
    • 2000
  • A probabilistic model of burr formation in face milling of gray cast iron is proposed. During a face milling operation, an irregular pattern of the edge profile consisting of burrs and edge breakouts is observed at the end of cut. Based on the metal cutting theory, we derive a probabilistic model. The operational bayesian modeling approach is adopted to include the relevant theory in the model.

  • PDF

단인과 다인 정면밀리의 가공특성에 관한 연구 (A Study on Machining Characteristics of Single-insert and Multi-insert Face Milling)

  • Kim, S.I.;Lee, W.R.;Kim, T.Y.
    • 한국정밀공학회지
    • /
    • 제12권4호
    • /
    • pp.19-27
    • /
    • 1995
  • Face milling is required to study cutting process with a view of multipoint cutter. This experimental study mainly deals with the single and multi-insert cutting characteristics using coated tool. Because metal cutting of the single and multi-insert has a large relation to the improvement of productivity, the economic cutting process can be achieved by the analysis of proper metal cutting mechanism. Therefore, machining characteristics of face molling in this paper has been studied by investigating the role of different insert number which is concerned with mean cutting force, the RMS values of AE(acoustic emission) signal, tool life and surface roughness in milling SS 41 and SUS 304. The cutting force and AE signal are monitored to make an analysis of cutting process. The surface roughness of the specimens machined by inserts of different numbers is measured at different speeds, feeds and depth of cut. The width of flank wear is also observed.

  • PDF

정면밀링공정에서 공구상태 변화를 고려한 절삭력예측 모델의 개발 (Development of mechanistic model for cutting force prediction considering cutting tool states in face milling)

  • Lee, S.S.;Kim, H.S.;Lee, Y.M.
    • 한국정밀공학회지
    • /
    • 제12권11호
    • /
    • pp.63-73
    • /
    • 1995
  • A mechanistic force system model considering the flank wear for the face milling process has been developed. The model predicts variation of the cutting forces according to flank wear in face milling over a range of cutting conditions, cutter geometries and cutting process geometries including relative positions of cutter to workpiece and rounouts. Flycutting and multitoth cutting teste were conducted on SS41 mild steel with sintered carbide tool. In order to verify the mechanistic force model considering the flank wear of cutting tools, a series of experiments was performed with single and multitooth cutters in various cutting conditions. The results show good agreement between the predicted and measured cutting force profiles and magnitudes in time and frequency domains.

  • PDF

정면밀링 가공시 발생하는 공구파손 검출에 관한 실험적 연구 (An Experimental Study on the Tool Failure Detection in the Machining by Face Milling)

  • 서재형;김성일;김태영
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.92-100
    • /
    • 1995
  • This experimental study is mainly investigated on the mean cutting forces and AE(acoustic emission) parameters in order to detect and estimate the tool failure in the pachinig of SUS304 by face milling Mean cutting forces and AE parameters can detect the tool failure in face milling. Effective detection parameters are AE RMS, AE energy, AE count, AE duration, and z-direction mean cutting force. From the analysis of cutting tool failure detection, the tool failure of face milling is caused by sudden increasing of the cutting force.

  • PDF

정면밀리에서 공구경사각을 고려한 비절삭저항 예측 (Prediction of Specific Cutting Pressure in Face Milling Considering Tool Rake Angles)

  • 류시형;주종남
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.169-177
    • /
    • 1997
  • In this study, investigated are the effects of tool rake angles and the change of cutting conditions on the specific cutting pressure in face milling. The cutting force in face milling is predicted from the double cutting edge model in3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the presented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential force, radial force and geometric conditions. Also, the rela- tionship between specific cutting pressure and cutting conditions including feedrate, cutting velocity and depth of cut is studied.

  • PDF

Face Milling에서 Exit Burr의 최소화를 고려한 최적 가공 계획 알고리즘의 개발 (Development of optimal process planning algorithm considered Exit Burr minimization on Face Milling)

  • 김지환;김영진;고성림;김용현;박대흠
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1816-1819
    • /
    • 2003
  • As a result of milling operation, we expect to have burr at the outward edge of workpiece. Also, it causes undesirable problems such as deburring cost, low quality of machined surface, and bottleneck in manufacturing process. Though it is impossible to totally remove burr in machining, it is necessary to plan a machining process that minimizes the occurrence of burr. In this paper, a scheme is proposed which identifies the tool path of the milling operation with minimum burr. In the previous research, a Burr Expert System was developed where the feature identification, the cutting condition identification, and the analysis on exit burr formation are the key steps in the program. The Burr Expert System predicts which portion of workpiece would have the exit burr in advance so that we can calculate the burr length of each milling operation. Here, the critical angle determines whether the burr analyzed is an exit burr or not. So the burr minimization scheme becomes to minimize the burr with critical angle. By iterating all the possible tool paths in certain milling operation, we can identify the tool path with minimum burr.

  • PDF

난삭재인 SKD11의 정면밀링 가공시 절삭특성에 관한 연구 (A Study on the Cutting Characteristics in the Machining of SKD11 by Face Milling)

  • 김형석;문상돈;김태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.73-78
    • /
    • 1994
  • Wear and fracture mode of ceramic tool for hardened SKD11 steel was investigated by face milling in this study. The cutting force and Acoustic Emission(AE) signal were utilized to detect the wear and fracture of ceramic tool. The following conclusions were obtained : (1) The wear and fracture modes of ceramic tool are characterized by three types: \circled1wear which has normal wear and notch wear, \circled2 wear caused by scooping on the rake face, \circled3 large fracture caused by thermal crack in the rake face. (2) The wear behaviour of ceramic tool can be detected by the increase of mean cutting force and the variation of the AE RMS voltage. (3) The catastrophic fracture of ceramic tool can be detected by the cutting force(Fz-component). (4) As the hardness of work material increased, Acoustic Emission RMS value and mean cutting force(Fz) increased linearly, but the tool life decreased.

  • PDF

평판의 정면밀링 가공에서 발생하는 채터 (Chatter in Plate Milling with a Face Mill)

  • 이상민;이영수;주종남
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.46-54
    • /
    • 2004
  • A cutting force model predicting the dynamic force induced by the axial vibration of it plate in face milling is introduced. When a plate face is milled, deformation in tool axial direction is considerable. Therefore, cutting forces are affected by not only inner-outer modulation in feed direction but also by axial deformation. A PTP (peak-to-peak) diagram made by the simulated dynamic force model is evaluated. The stability of the face milling process such as the chatter outset, and the stable cutting region can be simply estimated. Simulation results are compared with that of experiment.

Side Milling Cutter 를 이용한 Worm Screw 가공시 절삭 모델링을 통한 Cusp 예측 (A study on the forecast of Cusp by Cutting Modeling in Worm Screw Process by Side Milling Cutter)

  • 김창현;권태웅;강동배;이민환;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1893-1896
    • /
    • 2005
  • Cutting force and face roughness have the largest influence on precision of a structure or processing efficiency in cutting processing. Thus cutting force model and face roughness model are necessary for this interpretation. In this paper, tool path model and face roughness model which consider the blade number of a tool and a revolution speed of tool and workpiece in the worm processing using side milling cutter are presented. This model was used to forcast the cusp. Experimental results show that the predicted cusp coincides with experimental one.

  • PDF