• Title/Summary/Keyword: Face verification

Search Result 217, Processing Time 0.023 seconds

Improved Face Detection Algorithm Using Face Verification (얼굴 검증을 이용한 개선된 얼굴 검출)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1334-1339
    • /
    • 2018
  • Viola & Jones's face detection algorithm is a typical face detection algorithm and shows excellent face detection performance. However, the Viola & Jones's algorithm in images including many faces generates undetected faces and wrong detected faces, such as false faces and duplicate detected faces, due to face diversity. This paper proposes an improved face detection algorithm using a face verification algorithm that eliminates the false detected faces generated from the Viola & Jones's algorithm. The proposed face verification algorithm verifies whether the detected face is valid by evaluating its size, its skin color in the designated area, its edges generated from eyes and mouth, and its duplicate detection. In the face verification experiment of 658 face images detected by the Viola & Jones's algorithm, the proposed face verification algorithm shows that all the face images created in the real person are verified.

De-Identified Face Image Generation within Face Verification for Privacy Protection (프라이버시 보호를 위한 얼굴 인증이 가능한 비식별화 얼굴 이미지 생성 연구)

  • Jung-jae Lee;Hyun-sik Na;To-min Ok;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.201-210
    • /
    • 2023
  • Deep learning-based face verificattion model show high performance and are used in many fields, but there is a possibility the user's face image may be leaked in the process of inputting the face image to the model. Althoughde-identification technology exists as a method for minimizing the exposure of face features, there is a problemin that verification performance decreases when the existing technology is applied. In this paper, after combining the face features of other person, a de-identified face image is created through StyleGAN. In addition, we propose a method of optimizingthe combining ratio of features according to the face verification model using HopSkipJumpAttack. We visualize the images generated by the proposed method to check the de-identification performance, and evaluate the ability to maintain the performance of the face verification model through experiments. That is, face verification can be performed using the de-identified image generated through the proposed method, and leakage of face personal information can be prevented.

Two-Dimensional Joint Bayesian Method for Face Verification

  • Han, Sunghyu;Lee, Il-Yong;Ahn, Jung-Ho
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.381-391
    • /
    • 2016
  • The Joint Bayesian (JB) method has been used in most state-of-the-art methods for face verification. However, since the publication of the original JB method in 2012, no improved verification method has been proposed. A lot of studies on face verification have been focused on extracting good features to improve the performance in the challenging Labeled Faces in the Wild (LFW) database. In this paper, we propose an improved version of the JB method, called the two-dimensional Joint Bayesian (2D-JB) method. It is very simple but effective in both the training and test phases. We separated two symmetric terms from the three terms of the JB log likelihood ratio function. Using the two terms as a two-dimensional vector, we learned a decision line to classify same and not-same cases. Our experimental results show that the proposed 2D-JB method significantly outperforms the original JB method by more than 1% in the LFW database.

Driver Verification System Using Biometrical GMM Supervector Kernel (생체기반 GMM Supervector Kernel을 이용한 운전자검증 기술)

  • Kim, Hyoung-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.67-72
    • /
    • 2010
  • This paper presents biometrical driver verification system in car experiment through analysis of speech, and face information. We have used Mel-scale Frequency Cesptral Coefficients (MFCCs) for speaker verification using speech information. For face verification, face region is detected by AdaBoost algorithm and dimension-reduced feature vector is extracted by using principal component analysis only from face region. In this paper, we apply the extracted speech- and face feature vectors to an SVM kernel with Gaussian Mixture Models(GMM) supervector. The experimental results of the proposed approach show a clear improvement compared to a simple GMM or SVM approach.

Intelligent Immigration Control System by Using Passport Recognition and Face Verification

  • Kim, Kwang-Beak
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.240-246
    • /
    • 2006
  • This paper proposes the intelligent immigration control system that authorizes the traveler through immigration and detects forged passports by using automatic recognition of passport codes, the passport photo and face verification. The proposed system extracts and deskewes the areas of passport codes from the passport image. This paper proposes the novel ART algorithm creating the adaptive clusters to the variations of input patterns and it is applied to the extracted code areas for the code recognition. After compensating heuristically the recognition result, the detection of forged passports is achieved by using the picture and face verification between the passport photo extracted from the passport image and the picture retrieved from the database based on the recognized codes. Due to the proposed ART algorithm and the heuristic refinement, the proposed system relatively shows better performance.

Evaluation of Histograms Local Features and Dimensionality Reduction for 3D Face Verification

  • Ammar, Chouchane;Mebarka, Belahcene;Abdelmalik, Ouamane;Salah, Bourennane
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.468-488
    • /
    • 2016
  • The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.

2D - 3D Human Face Verification System based on Multiple RGB-D Camera using Head Pose Estimation (얼굴 포즈 추정을 이용한 다중 RGB-D 카메라 기반의 2D - 3D 얼굴 인증을 위한 시스템)

  • Kim, Jung-Min;Li, Shengzhe;Kim, Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.4
    • /
    • pp.607-616
    • /
    • 2014
  • Face recognition is a big challenge in surveillance system since different rotation angles of the face make the difficulty to recognize the face of the same person. This paper proposes a novel method to recognize face with different head poses by using 3D information of the face. Firstly, head pose estimation (estimation of different head pose angles) is accomplished by the POSIT algorithm. Then, 3D face image data is constructed by using head pose estimation. After that, 2D image and the constructed 3D face matching is performed. Face verification is accomplished by using commercial face recognition SDK. Performance evaluation of the proposed method indicates that the error range of head pose estimation is below 10 degree and the matching rate is about 95%.

Face Verification System Using Optimum Nonlinear Composite Filter (최적화된 비선형 합성필터를 이용한 얼굴인증 시스템)

  • Lee, Ju-Min;Yeom, Seok-Won;Hong, Seung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.44-51
    • /
    • 2009
  • This paper addresses a face verification method using the nonlinear composite filter. This face verification process can be simple and speedy because it does not require any reprocessing such as face detection, alignment or cropping. The optimum nonlinear composite filter is derived by minimizing the output energy due to additive noise and an input scene while maintaining the outputs of training images constant. The filter is equipped with the discrimination capability and the robustness to additive noise by minimizing the outputs of the input scene and the noise, respectively. We build the nonlinear composite filter with two training images and compare the filter with the conventional synthetic discriminant function (SDF) filter. The receiver operating characteristics (ROC) curves are presented as a metric for the performance evaluation. According to the experimental results the optimum nonlinear composite filter is shown to be a robust scheme for face verification in low resolution and noise environments.

A Study on the Improvement of User Identification of Non-Face-to-Face Financial Transactions with Messenger Phishing Case (비대면 금융거래 사용자 확인 개선방안 연구 - 메신저피싱 사례를 중심으로)

  • Eun Bi Kim;Ik Rae Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.353-362
    • /
    • 2023
  • Messenger phishing, communications frauds crime, exploits remote control of smartphones and non-face-to-face financial transactions, causing property damage due to money transfers, as well as account opening and loans in the name of victims. Such financial accidents may be careless of victims, but the current messenger phishing criminal method is intelligent and can be seen as digging into loopholes in the non-face-to-face user verification process. In this paper we analyze how messenger phishing uses loopholes in user identification procedures in non-face-to-face financial transactions. Through experiments, it is suggested to improve the non-face-to-face verification process for safer financial transactions.

A Study on Feature Extraction of Morphological Shape Decomposition for Face Verification (얼굴인증을 위한 형태학적 형상분해의 특징추출에 관한 연구)

  • Park, In-Kyu;Ahn, Bo-Hyuk;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.7-12
    • /
    • 2009
  • The new approach was proposed which uses feature extraction based on fuzzy integral in the process of face verification using morphological shape decomposition. The centre of area was used with image pixels related with structure element and its weight in an attempt to consider neighborhood information. Therefore the morphological operators were defined for feature extraction. And then the number of decomposition images were more about 4 times than the conventional. Finally in the simulations with the extractions for face verification it was proved that the approach in this paper was even more good than the conventional in stability of feature extraction and threshold value.

  • PDF