• Title/Summary/Keyword: Face tracking

Search Result 345, Processing Time 0.024 seconds

Robust human tracking via key face information

  • Li, Weisheng;Li, Xinyi;Zhou, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5112-5128
    • /
    • 2016
  • Tracking human body is an important problem in computer vision field. Tracking failures caused by occlusion can lead to wrong rectification of the target position. In this paper, a robust human tracking algorithm is proposed to address the problem of occlusion, rotation and improve the tracking accuracy. It is based on Tracking-Learning-Detection framework. The key auxiliary information is used in the framework which motivated by the fact that a tracking target is usually embedded in the context that provides useful information. First, face localization method is utilized to find key face location information. Second, the relative position relationship is established between the auxiliary information and the target location. With the relevant model, the key face information will get the current target position when a target has disappeared. Thus, the target can be stably tracked even when it is partially or fully occluded. Experiments are conducted in various challenging videos. In conjunction with online update, the results demonstrate that the proposed method outperforms the traditional TLD algorithm, and it has a relatively better tracking performance than other state-of-the-art methods.

Face detection using haar-like feature and Tracking with Lucas-Kanade feature tracker (Haar-like feature를 이용한 얼굴 검출과 추적을 위한 Lucas-Kanade특징 추적)

  • Kim, Ki-Sang;Kim, Se-Hoon;Park, Gene-Yong;Choi, Hyung-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.835-838
    • /
    • 2008
  • In this paper, we present automatic face detection and tracking which is robustness in rotation and translation. Detecting a face image, we used Haar-like feature, which is fast detect facial image. Also tracking, we applied Lucas-Kanade feature tracker and KLT algorithm, which has robustness for rotated facial image. In experiment result, we confirmed that face detection and tracking which is robustness in rotation and translation.

  • PDF

A New Face Tracking Algorithm Using Convex-hull and Hausdorff Distance (Convex hull과 Robust Hausdorff Distance를 이용한 실시간 얼굴 트래킹)

  • Park, Min-Sik;Park, Chang-U;Park, Min-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.438-441
    • /
    • 2001
  • This paper describes a system for tracking a face in a input video sequence using facial convex hull based facial segmentation and a robust hausdorff distance. The algorithm adapts YCbCr color model for classifying face region by [l]. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, a Robust Hausdorff distance is computed and the best possible displacement is selected. Finally, the previous face model is updated using the displacement t. It is robust to some noises and outliers. We provide an example to illustrate the proposed tracking algorithm in video sequences obtained from CCD camera.

  • PDF

A Face Tracking Algorithm for Multi-view Display System

  • Han, Chung-Shin;Go, Min Soo;Seo, Young-Ho;Kim, Dong-Wook;Yoo, Ji-Sang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • This paper proposes a face tracking algorithm for a viewpoint adaptive multi-view synthesis system. The original scene captured by a depth camera contains a texture image and 8 bit gray-scale depth map. From this original image, multi-view images that correspond to the viewer's position can be synthesized using geometrical transformations, such as rotation and translation. The proposed face tracking technique gives a motion parallax cue by different viewpoints and view angles. In the proposed algorithm, the viewer's dominant face, which is established initially from a camera, can be tracked using the statistical characteristics of face colors and deformable templates. As a result, a motion parallax cue can be provided by detecting the viewer's dominant face area and tracking it, even under a heterogeneous background, and synthesized sequences can be displayed successfully.

  • PDF

A Fast and Accurate Face Detection and Tracking Method by using Depth Information (깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법)

  • Bae, Yun-Jin;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.586-599
    • /
    • 2012
  • This paper proposes a fast face detection and tracking method which uses depth images as well as RGB images. It consists of the face detection procedure and the face tracking procedure. The face detection method basically uses an existing method, Adaboost, but it reduces the size of the search area by using the depth image. The proposed face tracking method uses a template matching technique and incorporates an early-termination scheme to reduce the execution time further. The results from implementing and experimenting the proposed methods showed that the proposed face detection method takes only about 39% of the execution time of the existing method. The proposed tracking method takes only 2.48ms per frame with $640{\times}480$ resolution. For the exactness, the proposed detection method showed a little lower in detection ratio but in the error ratio, which is for the cases when a detected one as a face is not really a face, the proposed method showed only about 38% of that of the previous method. The proposed face tracking method turned out to have a trade-off relationship between the execution time and the exactness. In all the cases except a special one, the tracking error ratio is as low as about 1%. Therefore, we expect the proposed face detection and tracking methods can be used individually or in combined for many applications that need fast execution and exact detection or tracking.

Robust Object Tracking System Based on Face Detection (얼굴검출에 기반한 강인한 객체 추적 시스템)

  • Kwak, Min Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • Embedded devices with the development of modern computer technology also began equipped with a variety of functions. In this study, to provide a method of tracking efficient face with a small instrument of resources, such as built-in equipment that uses an image sensor in recent years has been actively carried out. It uses a face detection method using the features of the MB-LBP in order to obtain an accurate face, specify the region (Region of Interest) around the face when the face detection for the face object tracking in the next video did. And in the video can not be detected faces, to track objects using the CAM-Shift key is a conventional object tracking method, which make it possible to retain the information without loss of object information. In this study, through the comparison with the previous studies, it was confirmed the precision and high-speed performance of the object tracking system.

Multiple Face Segmentation and Tracking Based on Robust Hausdorff Distance Matching

  • Park, Chang-Woo;Kim, Young-Ouk;Sung, Ha-Gyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.632-635
    • /
    • 2003
  • This paper describes a system fur tracking multiple faces in an input video sequence using facial convex hull based facial segmentation and robust hausdorff distance. The algorithm adapts skin color reference map in YCbCr color space and hair color reference map in RGB color space for classifying face region. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, this algorithm computes displacement of the point set between frames using a robust hausdorff distance and the best possible displacement is selected. Finally, the initial face model is updated using the displacement. We provide an example to illustrate the proposed tracking algorithm, which efficiently tracks rotating and zooming faces as well as existing multiple faces in video sequences obtained from CCD camera.

  • PDF

Illumination Invariant Face Tracking on Smart Phones using Skin Locus based CAMSHIFT

  • Bui, Hoang Nam;Kim, SooHyung;Na, In Seop
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.9-19
    • /
    • 2013
  • This paper gives a review on three illumination issues of face tracking on smart phones: dark scenes, sudden lighting change and backlit effect. First, we propose a fast and robust face tracking method utilizing continuous adaptive mean shift algorithm (CAMSHIFT) and CbCr skin locus. Initially, the skin locus obtained from training video data. After that, a modified CAMSHIFT version based on the skin locus is accordingly provided. Second, we suggest an enhancement method to increase the chance of detecting faces, an important initialization step for face tracking, under dark illumination. The proposed method works comparably with traditional CAMSHIFT or particle filter, and outperforms these methods when dealing with our public video data with the three illumination issues mentioned above.

  • PDF

Multiple Face Segmentation and Tracking Based on Robust Hausdorff Distance Matching

  • Park, Chang-Woo;Kim, Young-Ouk;Sung, Ha-Gyeong;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.87-92
    • /
    • 2003
  • This paper describes a system for tracking multiple faces in an input video sequence using facial convex hull based facial segmentation and robust hausdorff distance. The algorithm adapts skin color reference map in YCbCr color space and hair color reference map in RGB color space for classifying face region. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, this algorithm computes displacement of the point set between frames using a robust hausdorff distance and the best possible displacement is selected. Finally, the initial face model is updated using the displacement. We provide an example to illustrate the proposed tracking algorithm, which efficiently tracks rotating and zooming faces as well as existing multiple faces in video sequences obtained from CCD camera.

A study on the eye Location for Video-Conferencing Interface (화상 회의 인터페이스를 위한 눈 위치 검출에 관한 연구)

  • Jung, Jo-Nam;Gang, Jang-Mook;Bang, Kee-Chun
    • Journal of Digital Contents Society
    • /
    • v.7 no.1
    • /
    • pp.67-74
    • /
    • 2006
  • In current video-conferencing systems. user's face movements are restricted by fixed camera, therefore it is inconvenient to users. To solve this problem, tracking of face movements is needed. Tracking using whole face needs much computing time and whole face is difficult to define as an one feature. Thus, using several feature points in face is more desirable to track face movements efficiently. This paper addresses an effective eye location algorithm which is essential process of automatic human face tracking system for natural video-conferencing. The location of eye is very important information for face tracking, as eye has most clear and simplest attribute in face. The proposed algorithm is applied to candidate face regions from the face region extraction. It is not sensitive to lighting conditions and has no restriction on face size and face with glasses. The proposed algorithm shows very encouraging results from experiments on video-conferencing environments.

  • PDF