• Title/Summary/Keyword: Face it

검색결과 5,075건 처리시간 0.029초

Tiny and Blurred Face Alignment for Long Distance Face Recognition

  • Ban, Kyu-Dae;Lee, Jae-Yeon;Kim, Do-Hyung;Kim, Jae-Hong;Chung, Yun-Koo
    • ETRI Journal
    • /
    • 제33권2호
    • /
    • pp.251-258
    • /
    • 2011
  • Applying face alignment after face detection exerts a heavy influence on face recognition. Many researchers have recently investigated face alignment using databases collected from images taken at close distances and with low magnification. However, in the cases of home-service robots, captured images generally are of low resolution and low quality. Therefore, previous face alignment research, such as eye detection, is not appropriate for robot environments. The main purpose of this paper is to provide a new and effective approach in the alignment of small and blurred faces. We propose a face alignment method using the confidence value of Real-AdaBoost with a modified census transform feature. We also evaluate the face recognition system to compare the proposed face alignment module with those of other systems. Experimental results show that the proposed method has a high recognition rate, higher than face alignment methods using a manually-marked eye position.

Analogical Face Generation based on Feature Points

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk
    • Journal of Multimedia Information System
    • /
    • 제6권1호
    • /
    • pp.15-22
    • /
    • 2019
  • There are many ways to perform face recognition. The first step of face recognition is the face detection step. If the face is not found in the first step, the face recognition fails. Face detection research has many difficulties because it can be varied according to face size change, left and right rotation and up and down rotation, side face and front face, facial expression, and light condition. In this study, facial features are extracted and the extracted features are geometrically reconstructed in order to improve face recognition rate in extracted face region. Also, it is aimed to adjust face angle using reconstructed facial feature vector, and to improve recognition rate for each face angle. In the recognition attempt using the result after the geometric reconstruction, both the up and down and the left and right facial angles have improved recognition performance.

Automatic Face Identification System Using Adaptive Face Region Detection and Facial Feature Vector Classification

  • Kim, Jung-Hoon;Do, Kyeong-Hoon;Lee, Eung-Joo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1252-1255
    • /
    • 2002
  • In this paper, face recognition algorithm, by using skin color information of HSI color coordinate collected from face images, elliptical mask, fratures of face including eyes, nose and mouth, and geometrical feature vectors of face and facial angles, is proposed. The proposed algorithm improved face region extraction efficacy by using HSI information relatively similar to human's visual system along with color tone information about skin colors of face, elliptical mask and intensity information. Moreover, it improved face recognition efficacy with using feature information of eyes, nose and mouth, and Θ1(ACRED), Θ2(AMRED) and Θ 3(ANRED), which are geometrical face angles of face. In the proposed algorithm, it enables exact face reading by using color tone information, elliptical mask, brightness information and structural characteristic angle together, not like using only brightness information in existing algorithm. Moreover, it uses structural related value of characteristics and certain vectors together for the recognition method.

  • PDF

FD-StackGAN: Face De-occlusion Using Stacked Generative Adversarial Networks

  • Jabbar, Abdul;Li, Xi;Iqbal, M. Munawwar;Malik, Arif Jamal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2547-2567
    • /
    • 2021
  • It has been widely acknowledged that occlusion impairments adversely distress many face recognition algorithms' performance. Therefore, it is crucial to solving the problem of face image occlusion in face recognition. To solve the image occlusion problem in face recognition, this paper aims to automatically de-occlude the human face majority or discriminative regions to improve face recognition performance. To achieve this, we decompose the generative process into two key stages and employ a separate generative adversarial network (GAN)-based network in both stages. The first stage generates an initial coarse face image without an occlusion mask. The second stage refines the result from the first stage by forcing it closer to real face images or ground truth. To increase the performance and minimize the artifacts in the generated result, a new refine loss (e.g., reconstruction loss, perceptual loss, and adversarial loss) is used to determine all differences between the generated de-occluded face image and ground truth. Furthermore, we build occluded face images and corresponding occlusion-free face images dataset. We trained our model on this new dataset and later tested it on real-world face images. The experiment results (qualitative and quantitative) and the comparative study confirm the robustness and effectiveness of the proposed work in removing challenging occlusion masks with various structures, sizes, shapes, types, and positions.

딥러닝 기반의 새로운 마스크 얼굴 데이터 세트를 사용한 최신 얼굴 인식 (Modern Face Recognition using New Masked Face Dataset Generated by Deep Learning)

  • 판반뎃;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.647-650
    • /
    • 2021
  • The most powerful and modern face recognition techniques are using deep learning methods that have provided impressive performance. The outbreak of COVID-19 pneumonia has spread worldwide, and people have begun to wear a face mask to prevent the spread of the virus, which has led existing face recognition methods to fail to identify people. Mainly, it pushes masked face recognition has become one of the most challenging problems in the face recognition domain. However, deep learning methods require numerous data samples, and it is challenging to find benchmarks of masked face datasets available to the public. In this work, we develop a new simulated masked face dataset that we can use for masked face recognition tasks. To evaluate the usability of the proposed dataset, we also retrained the dataset with ArcFace based system, which is one the most popular state-of-the-art face recognition methods.

AdaBoost와 ASM을 활용한 얼굴 검출 (Face Detection using AdaBoost and ASM)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.105-108
    • /
    • 2018
  • Face Detection is an essential first step of the face recognition, and this is significant effects on face feature extraction and the effects of face recognition. Face detection has extensive research value and significance. In this paper, we present and analysis the principle, merits and demerits of the classic AdaBoost face detection and ASM algorithm based on point distribution model, which ASM solves the problems of face detection based on AdaBoost. First, the implemented scheme uses AdaBoost algorithm to detect original face from input images or video stream. Then, it uses ASM algorithm converges, which fit face region detected by AdaBoost to detect faces more accurately. Finally, it cuts out the specified size of the facial region on the basis of the positioning coordinates of eyes. The experimental result shows that the method can detect face rapidly and precisely, with a strong robustness.

몽타주 기법과 음영합성 기법을 이용한 벡터기반 얼굴 생성 (Vector-based Face Generation using Montage and Shading Method)

  • 박연출;오해석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권6호
    • /
    • pp.817-828
    • /
    • 2004
  • 본 논문에서는 몽타주 기법과 음영합성 기법을 이용한, 디자이너(예술가)의 감각을 살린 벡터 기반의 얼굴 생성 시스템을 제안한다. 제안하는 시스템은 사진으로부터 얼굴의 특징정보를 추출하여 사람의 얼굴과 유사한 얼굴을 자동으로 생성해 주는 시스템이며, 윤곽선만을 사용하던 기존의 얼굴 생성 시스템과 달리 컬러 기반이며, 음영을 사진으로부터 추출하여 이를 이목구비 이미지와 합성하여 생성하는 방식이다. 따라서 실사형에 좀 더 근접한 얼굴을 생성할 수 있다는 장점을 갖는다. 또, 벡터를 기반으로 하기 때문에 사이즈에 제한 얼이 자유로운 변형이 가능할 뿐만 아니라 디자이너 또는 그림 작가의 느낌을 결과물에 그대로 유지할 수 있도록 한다는 점에서 타 접근방식과의 차별성을 갖는다. 또, 2D 아바타에 자유로운 표정을 적용하는 데에도 쉽게 적용이 가능하다.

Three-dimensional Face Recognition based on Feature Points Compression and Expansion

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Park, Sang-min;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk;Son, Byounghee
    • Journal of Multimedia Information System
    • /
    • 제6권2호
    • /
    • pp.91-98
    • /
    • 2019
  • Many researchers have attempted to recognize three-dimensional faces using feature points extracted from two-dimensional facial photographs. However, due to the limit of flat photographs, it is very difficult to recognize faces rotated more than 15 degrees from original feature points extracted from the photographs. As such, it is difficult to create an algorithm to recognize faces in multiple angles. In this paper, it is proposed a new algorithm to recognize three-dimensional face recognition based on feature points extracted from a flat photograph. This method divides into six feature point vector zones on the face. Then, the vector value is compressed and expanded according to the rotation angle of the face to recognize the feature points of the face in a three-dimensional form. For this purpose, the average of the compressibility and the expansion rate of the face data of 100 persons by angle and face zone were obtained, and the face angle was estimated by calculating the distance between the middle of the forehead and the tail of the eye. As a result, very improved recognition performance was obtained at 30 degrees of rotated face angle.

방송 비디오 등장인물 자동 분석 시스템 (Automatic Cast-list Analysis System in Broadcasting Videos)

  • 김기남;김형준;김회율
    • 방송공학회논문지
    • /
    • 제9권2호
    • /
    • pp.164-173
    • /
    • 2004
  • 본 논문에서는 등장인물 검출 및 인식과 함께 등장인물의 출연 구간 분석이 가능한 시스템을 제안한다. 드라마, 스포츠와 같은 방송 비디오는 그 특성상 인물이 중심이 되며 각 시점에 등장하는 주요 인물은 방송용 비디오의 중요한 특징이 된다. 본 논문에서는 비디오에서 등장하는 주요 인물을 자동으로 분석하는 ACAV(Automatic Cast-list Analysis in Videos) 시스템을 제안한다. ACAV 시스템은 등장인물을 자동 검출하여 인물 DB에 등록하는 FAGIS(FAce reGIStration)와 생성된 인물 DB을 이용하여 등장인물을 분석하는 FACOG(FAce reCOGnition)로 구성된다. 기존의 상용화된 등장인물 분석 시스템인 FaceIt과의 성능 비교를 통해 ACAV의 성능을 검증하였다. 얼굴 검출 실험에서 ACAV의 얼굴 검출률은 84.3%로 FaceIt 보다 약 30% 높았고, 얼굴 인식 실험에서도 ACAV의 얼굴 인식률은 75.7%로 FaceIt 보다 27.5% 높은 성능을 보였다. ACAV 시스템은 방송 멀티미디어 공급자를 위한 대용량 비디오 관리 시스템으로 이용될 수 있으며 일반 사용자를 대상으로 한 PVR(Personal Video Recorder), 모바일 폰 등의 비디오 관리 시스템으로도 이용될 수 있다.

The Impact of Face-to-Face Sales in the Air Service Market

  • SUNG, Yu-Lim;PARK, Hye-Yoon
    • 유통과학연구
    • /
    • 제18권10호
    • /
    • pp.39-52
    • /
    • 2020
  • Purpose: This study aims to find out the relationship between the impact of Korean crew on airline service quality in the global aviation market, which is the representative of the face-to-face sales and can help in the face-to-face market of aviation services. Research design, data: The survey was conducted for about a month from March 1 to April 6, 2020, and a total of 300 copies were used in the analysis of the results. To verify the hypothesis, data was analyzed using the statistical package program SPSS 18.0, and frequency analysis, exploratory factor analysis, correlation analysis, and multiple regression analysis were performed. Results: It is a study on the sales of face-to-face service of crews of global airlines. Non-verbal elements in airline service face-to-face sales have been shown to have a significant impact on service quality. Conclusions: In the face-to-face service sales of global airlines, communication has been shown to affect service quality. A face-to-face sale using mother tongue means important. The better the flight attendant's linguistic face-to-face selling ability, the more positive on the airline's quality of service. It suggests that the communication skills of managers in the aviation service market are important for repurchase.