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Abstract 

 
It has been widely acknowledged that occlusion impairments adversely distress many face 
recognition algorithms' performance. Therefore, it is crucial to solving the problem of face 
image occlusion in face recognition. To solve the image occlusion problem in face recognition, 
this paper aims to automatically de-occlude the human face majority or discriminative regions 
to improve face recognition performance. To achieve this, we decompose the generative 
process into two key stages and employ a separate generative adversarial network 
(GAN)-based network in both stages. The first stage generates an initial coarse face image 
without an occlusion mask. The second stage refines the result from the first stage by forcing it 
closer to real face images or ground truth. To increase the performance and minimize the 
artifacts in the generated result, a new refine loss (e.g., reconstruction loss, perceptual loss, and 
adversarial loss) is used to determine all differences between the generated de-occluded face 
image and ground truth.  Furthermore, we build occluded face images and corresponding 
occlusion-free face images dataset. We trained our model on this new dataset and later tested it 
on real-world face images. The experiment results (qualitative and quantitative) and the 
comparative study confirm the robustness and effectiveness of the proposed work in removing 
challenging occlusion masks with various structures, sizes, shapes, types, and positions.  
 
 
Keywords: Generative adversarial network (GAN), image restoration, image 
reconstruction, occlusions mask removal. 

mailto:jabbar@zju.edu.cn
mailto:xilizju@zju.edu.cn
mailto:mmic@qau.edu.pk
mailto:arif.malik@fui.edu.pk


2548                                              Jabbar et al.: FD-StackGAN: Face De-occlusion Using Stacked Generative Adversarial Networks 

1. Introduction 

Revealing human face identity, often corrupted by serious occlusion masks, is one of the 
most vigorous and widespread study hotspots in computer vision applications, including law 
enforcement and entertainment systems. Clear face images play the most substantial role in 
describing face identity characteristics. However, in actual situations in the special events 
celebration, surveillance cameras or face recognition systems encounter new challenges in 
which they become inapplicable due to severe occlusion by occlusion mask. Removing the 
occlusion mask covering the human face's discriminative region and correctly restoring the 
face missing contents might help face recognition. Furthermore, occlusion-free face images 
can significantly boost human face recognition systems' efficiency and accuracy when only 
occluded face images of criminal suspects are in access.  

A significant improvement has been made in developing image synthesis methods for the 
last few years, from an occluded face image to an occlusion-free face image transformation 
task. They produced plausible results; however, they have some un-ignorable defects 
associated with the affected regions, such as lack of high-frequency information and lack of 
perceptual information in situations where they have to deal with occlusion masks that have 
large variations in structures, sizes, shapes, types, and positions in the face image. This is 
primarily because these methods are trained where occlusion masks, including medical masks, 
sunglasses, eyeglasses, microphones, scarves, cups, and hands, have less structures, sizes, 
shapes, types, positions variations in the face image. Unfortunately, their algorithms also show 
severe deformations and aliasing flaws in their results, especially regions around the eyes. 
Such degraded results severely affect many computer vision systems, such as recognition, 
identification, tracking, detection, and classification.  

This work aims to improve the performance of computer vision algorithms for face 
identification/recognition purposes. For this, we present a GAN [1] based network that 
automatically eliminates the occlusion mask and creates sharp fillings under the affected 
region. As a result, the completed face looks realistic and natural and steadies the rest of the 
surrounding area. In the proposed model, Face De-occlusion using Stacked Generative 
Adversarial Network (FD-StackGAN), a divide-and-conquer scheme is used to divide the 
mask de-occlusion process into two key stages. The first stage network generates an initial 
occlusion-free face image with content details as realistic as possible. The second stage 
network further polishes the initial occlusion-free face image by adding more photorealistic 
details to make it more visually pleasing and similar to the target image.  

An example of face image de-occlusion is shown in Fig. 1. By following the well-known 
"coarse-to-fine structure recovery method," The Stage-I network removes the occlusion mask 
from the face image. It generates the initial de-occluded face image, which may have 
undesired artifacts (e.g., blurriness or glaring errors) in the recovered areas. The Stage-II 
network further polishes the initial de-occluded face image by removing the undesired 
artifacts or some deficiencies in the Stage-I result and generates the final de-occluded face 
image by adding more compelling details.  

Moreover, we trained the proposed model on a synthetically created dataset and assessed 
real-world images collected from the Internet. We compared the performance of the proposed 
model with previous approaches. Several experimental results prove that the proposed model 
does comparatively well than the other methods. 
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Fig. 1. Results of our model on real-world face images with real occlusion. 

The basic structure of this work is as. Related works are presented in Section 2. The 
proposed approach, along with the loss function, explains in Sections 3. The proposed 
scheme's implementation and training details are discussed in Section 4.  Comparison and 
discussion, along with ablation studies, are argued in Section 5. Finally, Section 6 concludes 
the work. 

2. Related Work 
This segment will discuss various related approaches, classified into traditional methods, 
CNN-based methods, and GAN-based methods.   

2.1 Traditional Methods 
Traditional methods can be further specialized into diffusion and patch-based methods. 
Diffusion-based methods [2]-[4] propagate neighboring information into the missing areas. 
However, for these diffusion-based approaches, reconstruction is limited to locally accessible 
information, and these approaches struggle to restore complex structures in missing areas. As 
a result, these methods cannot effectively handle large absent areas. In contrast, patch-based 
methods [5], [6] perform well in situations where similar spatial patterns/patches from either 
the same image or a set of images are copied and pasted into missing regions of the input 
image. However, these traditional methods are perfect for simple cases where similar and 
relevant homogeneous patches are propagated from uncovered areas to fill in the small 
missing area via an iterative searching mechanism of most similar patches. However, these 
methods cannot produce high-quality face components for large arbitrarily shaped damaged 
regions with only low-level information. 

2.2 CNN-based Methods 
The convolutional neural network (CNN) [7] based methods have greatly facilitated image 
completion advancements. Pathak et al. [8] proposed a context-encoder network (CENet) for 
image completion. The CENet restores the large missing areas conditioned on its surroundings 
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data. However, it creates unwanted artifacts and deficiencies in the recovered areas. Iizuka et 
al. [9] proposed a globally and locally consistent image completion (GLCM) system to 
complete the arbitrary size missing region in an image. However, it has remarkable noise and 
artifacts in the recovered region, particularly when holes seem to be at the margins. Zhang et al. 
[10] proposed a face completion method called DeMeshNet. The DeMehsNet can successfully 
enforce face identity preservation through perceptual loss, but it fails to recover a face image's 
large corrupt area. Li et al. [11] introduced a deep symmetry-consistent network (SymmFCNet) 
for face completion, which forces face symmetry to enhance global consistency. The 
CNN-based methods can complete arbitrary resolutions and various shapes covered by 
training a fully convolutional neural network (FCN). Unfortunately, CNN's receptive area is 
too limited to borrow information from distant spatial locations efficiently. As a result, CNN 
methods usually produce distorted effects, boundary shadows, and blurred textures.  

2.3 GAN-based Methods 
The generative adversarial network (GAN), a robust network used for unsupervised machine 
learning to build a min-max game between two players, i.e., setting up both the player 
(networks) with their different objectives. One player is called the generator (G). The other is 
the discriminator (D). 1st player (G) tries to fool the 2nd player (D) by producing very 
natural-looking images from random latent vector z, and 2nd player (D) gets better at 
in-distinguishing between real and generated data. GAN combined cost function is given as: 

     𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑉𝑉 (𝐷𝐷,𝐺𝐺) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙 (𝐷𝐷(𝑥𝑥)] +  𝔼𝔼𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧)[𝑙𝑙𝑙𝑙𝑙𝑙 (1 −𝐷𝐷(𝐺𝐺(𝑧𝑧)))]         (1)      

Where Equation (1) shows that there are two loss functions, log (D (x) for the discriminator, 
and log (1−D (G (z))) for the generator, and two optimizers for the generator and the 
discriminator since they are two different networks.  

The GAN-based methods have revealed encouraging effects in face recovery jobs.  Li et al. 
[12] introduced a GAN-based face completion method (GFCM) for synthesizing the missing 
contents of a face image. Concerning other methods, this generative face completion method 
(GFCM) has an additional global discriminator, ensuring a generated face image's reality and 
enforces the whole face image's consistency. Although the GFCM could produce semantically 
acceptable results, it has a few shortcomings, such as the image amalgamation operation 
required to apply the color coherency near the hole borders. The reconstructed face image has 
particular artifacts, especially when the covered parts are at the borders of an image. Yeh et al. 
[13] proposed a semantic image completion method using a CGAN [14] on the known region 
to generate the best un-corrupted image. This method finds the nearby encoding and fills the 
absent pixels by seeing both the context discriminator and the damaged image. This method 
has successfully recovered the covered area and generates the absent content well. In the case 
of huge missing areas, the effects produced are not reliable.  

Liao et al. [15] introduced a novel GAN-based collaborative adversarial learning approach 
called Collaborative GAN (CollaGAN) for face recovery. This CollaGAN suggests that a 
collaborative adversarial learning method facilitates the direct learning of face completion for 
better semantic understanding to yield better face in-painting ultimately. The proposed 
CollaGAN model aims to inductively progress the face completion task by integrating the 
additional knowledge implanted in other tasks (e.g., landmark detection and semantic 
segmentation). Introduced a novel GAN-based method for generative image inpainting with 
novel contextual attention Yu et al. [16] (CA) layer to copy-paste similar feature patches from 
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nearby related visible regions to the missing regions. The whole network can be trained 
end-to-end, but the copy-paste approach produces undesired artifacts in the affected region.  

Song et al. [17] proposed a two-stage network to perform a face completion task called 
Geometry Aware Face Completion (GAFC) model. In the first phase, a face geometry 
estimator estimates the face geometry of the face image. In the second phase, an 
encoder-decoder generator completes the face image using the face geometry information. 
Although the model results are superior over many face completion methods, they also 
severely suffer high computational costs due to prior knowledge of extracting networks. 
Nazeri et al. [18] proposed a GAN-based Edge-Connect method to recover the image after 
removing the unwanted objects. EdgeConnect breaks the problem into two stages: edge 
generator and image completion. The edge generator hallucinates the missing part's edges, 
followed by the image completion network, filling the missing parts using hallucinated edges. 
EdgeConnect has successfully recovered the missing areas and generates better results. 
However, in the case of huge missing regions, it cannot generate a realistic edge map. 

Din et al. [19] proposed a two-stage GAN-based framework to remove the face mask and 
reconstruct the region covered by the mask. The first stage detects the masks, and the second 
stage gets the reconstructed face. The experimental results outperformed other existing image 
editing methods. This approach, however, is a difficult and highly time-consuming process. 
This method also does not generalize well for numerous types of objects (occluded face 
objects). In most recent times, Maharjan et al. [20] proposed a two-stage GAN-based 
image-to-image translation method that exploits the full face semantic segmentation instead of 
the binary segmentation map of the object. The first network is concerned with image 
translation from occluded face to complete face segmentation. The second network translates 
the face segmentation map from the first network into a recovered face image. The problem 
with this method is that this technique is not quite flexible to handle numerous regions 
containing completely different structures and surrounding backgrounds, especially regions 
around the eyes, because completed faces must be well-organized the relationship among 
facial features including eyebrows, eyes, nose, and mouth. 

2.4 Relevance to other Works and Significance 
After reviewing various related approaches, EdgeConnect, GCA, and GLCM are the closest 
methods to our work. EdgeConnect also uses a two-staged adversarial approach in which it 
generates the guidance information in the first stage and edits the image in the second stage. 
Unlike EdgeConnect, we generate a binary segmentation map of the non-face object while 
EdgeConnect generates the edge map of the complete image. Moreover, it uses a GAN setup 
with one discriminator in both stages while we employ two separate discriminators in both 
stages with two separate generators, which uses CNN-based encoding-decoding network 
architecture with Skip-connection, which is used in the generator network to strengthen the 
predictive ability of the generator and to prevent the gradient vanishing caused by the deep 
network. The result shows that the image completed by the encoder-decoder with 
skip-connection is more realistic.  

In contrast, GLCM and GCA train both discriminators jointly at the same time along with 
one generator to learn global consistency and deep missing region with a post-processing step 
like poisson image blending (GL) while we train both discriminators along with two separate 
generators and our work does not use any supplementary processing or post-processing step. 
The GLCM and GCA models have noticeable artifacts and blurry in the generated regions since 
these models predict the missing regions from only high-level features. Different from GLCM 
and GCA, the proposed model predicts the missing regions from both low-level and high-level 



2552                                              Jabbar et al.: FD-StackGAN: Face De-occlusion Using Stacked Generative Adversarial Networks 

features (pixel-wise loss (𝑙𝑙1) for low-level features and Structural Similarity loss (SSIM) for 
high-level features). These schemes (EdgeConnect, GLCM, and GCA) do not work for our 
problem because they cannot overcome the complexity of the task and produce artifacts due to 
arbitrary shape large missing regions. 

The main difference of this paper from previous work is summarized as follows: 

 Different from earlier models, which often fail to generalize well for numerous types of 
occluded objects (masks) with different shapes and sizes, the proposed model is quite 
flexible; it can handle numerous occluded regions containing completely different 
structures, especially regions around the eyes because completed faces must be 
well-organized the relationship among facial features including eyebrows, eyes, nose, and 
mouth.  

 Unlike earlier models, which often face unstable training problems, the proposed model 
uses the two time-scale update rule (TTUR) for training. By using different learning rates 
for generator and discriminator updates, GAN training becomes faster and more stable. 
We employ the learning rate of 0.0001 for the generator and 0.0004 for the discriminator 
because a higher learning rate eases the regularized discriminator's slow learning problem.  

 The proposed model also shows superiority over several other models in computational 
efficiency (time cost (s) per sample). Finally, we demonstrate how the proposed model is 
different from other methods.  

 Unlike earlier two-stage models, the proposed model exploits the Stage-I input along with 
the Stage-I output again as a Stage- II input, as shown in Fig. 2.  The advantage of using 
the stage-I input again at Stage- II is that Stage- II can produce high-quality results 
considering the boundary consistency of the masked region.  

Our main contributions are as follows: 

 We propose a novel image-to-image translation approach using GAN for face 
de-occlusion, called Face De-Occlusion using Stacked GAN (FD-StackGAN). 
FD-StackGAN model can handle face images under challenging conditions, e.g., severe 
occlusions with significant variations in the structure, size, shape, type, and position in the 
face image. 

 To improve the performance and minimize the artifacts in generated results, a new refine 
loss function of reconstruction loss (pixel-wise loss (𝑙𝑙1) for low-level features and 
Structural Similarity loss (SSIM) for high-level features), perceptual loss, and adversarial 
loss are introduced to reconstruct well incorporated and visual-artifact-free facial images. 
This loss could improve the performance of the proposed model. 

 To train the proposed model, we have created a new synthetic face image dataset to solve 
the data scarcity problem by inserting various occlusion masks in facial images using the 
publicly accessible CelebA dataset.  

 Experimental results demonstrate that, although trained on a synthetic face-occluded 
dataset, the proposed model effectively removes non-face objects and generates 
structurally and perceptually plausible facial content in challenging real images. The 
proposed model also illustrates much better computational efficiency in term of time cost 
(s) for outputting accurate results. 
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3. Proposed Method 

3.1 Overview 
This section introduces the proposed multi-stage model for a face image with an occlusion 
mask to face without occlusion mask transformation tasks. Firstly, we provide details on the 
structure of FD-StackGAN. Then, we illustrate the considered loss functions in detail. Fig. 2 
shows the framework of the FD-StackGAN. The proposed model takes an occluded face 
image as input and tries to produce an occlusion-free face image as realistic as possible. This 
job is accomplished in a coarse-to-fine way: 1) Base-Net at Stage-I and Refine-Net at Stage-II. 
Each stage model, i.e., Base-Net and Refine-Net, represent a separate GAN. The generator and 
discriminator of Base-Net are denoted by 𝐺𝐺1 and 𝐷𝐷1, respectively. While the generator and 
discriminator of Refine-Net is denoted by 𝐺𝐺2  and  𝐷𝐷2 , respectively. The notation of  𝐼𝐼𝑔𝑔𝑔𝑔 
represents the ground truth. Details will be presented following. 
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Fig. 2.  The proposed FD-StackGAN model architecture. It consists of two separate networks (Base-Net 
and Refine-Net). The Base-Net generates an initial occlusion-free face image. The Refine-Net refines 

the Base-Net's generated result by forcing it closer to real face images or ground truth. 
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3.2 Stage-I: Base-Net 
The goal of the Base-Net at Stage-I is to generate the initial coarse occlusion-free face image 𝐼𝐼o𝑖𝑖  
after taking a face image 𝐼𝐼o  which is a combined input of an occluded face image 𝐼𝐼c  and 
corresponding binary mask 𝐼𝐼m of the occluded region. Stage-I generates an initial occlusion-free 
face image, which is coarse but close to the ground truth. 

The generator 𝐺𝐺1  in the Base-Net uses CNN-based encoding-decoding network 
architecture [21]. This encoder-decoder network uses the idea of U-Net [22] with skip 
connections to stop the loss of spatial information details at higher resolutions during 
down-sampling and up-sampling functions of the encoder and decoder network. The encoder 
takes the face image 𝐼𝐼o as input, and maps it to a low-dimensional latent representation. The 
decoder network then map back the low-dimensional latent representation, reconstructs and 
generates the initial coarse output face image 𝐼𝐼o𝑖𝑖 . The encoder of the generator 𝐺𝐺1 is composed 
of five convolution layers (for simplicity, only three layers of the encoder network are shown 
in Fig. 2) progressively down-samples the latent representation. Each convolution layer is 
used in a relu + a convolution + an instance normalization layer, except the first and last layers, 
which use a tanh in place of a relu. The decoder of the generator 𝐺𝐺1 is similar to the encoder 
except that de-convolution layers substitute convolution layers. The decoder is composed of 
de-convolution layers, gradually up-samples the latent representation to image scale. A 
combination of dilated convolution (DC) [23] and Squeeze-and-Excitation' (SE) blocks [24], 
as shown in Fig. 2, is used in the middle of the encoder-decoder. The purpose of dilated 
convolution (DC) is to enhance the receptive field size without increasing the computational 
power and network parameters, making the recovered area under the occlusion mask more 
consistent with its surroundings. The Squeeze-and-Excitation' (SE) block is an addition to the 
fully convolutionary network (FCN), which enhances a network's representative power by 
learning the weights for each feature map channel. The SE-blocks re-calibrate feature maps in 
the context of the channel. 

We used a Patch-GAN discriminator 𝐷𝐷1  [25] instead of using the regular GAN 
discriminators to increase the focus on reconstructing high-frequency content. The Patch-GAN 
discriminator slides a window size of 32 × 32 pixels over the face image 𝐼𝐼o𝑖𝑖  and produce a score 
that shows whether the patch in the face image is real or generated instead of grading the entire 
face image 𝐼𝐼o𝑖𝑖  to produce a more consistent face image with its surroundings.  

3.3 Base-Net Loss Function 
To minimize the artifacts and ensure better visual quality, a carefully designed arrangement of 
reconstruction, perceptual, and adversarial loss is used to produce an occlusion-free face 
image. The Base-Net loss function 𝐿𝐿stage−I  is composed of a reconstruction loss 𝐿𝐿𝑟𝑟 , a 
perceptual loss 𝐿𝐿𝑝𝑝, and an adversarial loss 𝐿𝐿𝑎𝑎. The Base-Net loss at Stage-I can be expressed 
as: 

                                                     𝐿𝐿stage−I = 𝜕𝜕𝜕𝜕r + 𝛽𝛽𝛽𝛽𝑝𝑝 +  𝐿𝐿a                                              (2) 

3.3.1 Reconstruction Loss   
The reconstruction loss  𝐿𝐿𝑟𝑟  force the generator to generate more accurate missing content, 
calculates the difference between the Stage-I generated occlusion-free face image 𝐼𝐼o𝑖𝑖  and ground 
truth 𝐼𝐼𝑔𝑔𝑔𝑔 . The reconstruction loss is composed: pixel-wise reconstruction loss 𝐿𝐿𝑙𝑙1  and 
structure-level similarity loss 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. The joint reconstruction loss 𝐿𝐿𝑟𝑟 can be stated as:  
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                                                                                         𝐿𝐿𝑟𝑟 = 𝐿𝐿𝑙𝑙1 + 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆                                                                                        (3) 

The pixel-wise reconstruction loss 𝐿𝐿𝑙𝑙1  measure the per-pixel difference between Stage-I 
generated occlusion-free face image 𝐼𝐼o𝑖𝑖  and ground truth 𝐼𝐼𝑔𝑔𝑔𝑔 . We calculate the pixel-wise 
reconstruction loss via 𝑙𝑙1-norm in place of 𝑙𝑙2-norm because 𝑙𝑙1-norm encourages less blurring 
and glaring errors than 𝑙𝑙2-norm. The pixel-wise reconstruction loss 𝐿𝐿𝑙𝑙1 can be defined as: 

                                                                                              𝐿𝐿𝑙𝑙1 = ||𝐼𝐼o𝑖𝑖  − 𝐼𝐼𝑔𝑔𝑔𝑔||                                                                                       (4) 

The structure-level similarity loss 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 [26] measure the structural level difference between 
generated occlusion-free face image 𝐼𝐼o𝑖𝑖  and ground truth 𝐼𝐼𝑔𝑔𝑔𝑔, can be defined as:  

                                                        𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − SSIM �𝐼𝐼o𝑖𝑖  , 𝐼𝐼𝑔𝑔𝑔𝑔�                                                                      (5) 

3.3.2 Perceptual Loss   
The perceptual loss 𝐿𝐿𝑝𝑝 encourage the generator output to have identical feature representation to 
the ground truth measures the feature-level difference between the feature maps of  Stage-I 
generated occlusion-free face image 𝐼𝐼o𝑖𝑖  and ground-truth 𝐼𝐼𝑔𝑔𝑔𝑔 , extracted by a well-trained 
VGG-19 network [27], can be defined as: 

                                                        𝐿𝐿𝑝𝑝 = ∑ ||𝜑𝜑𝑖𝑖(𝐼𝐼𝑜𝑜𝑖𝑖 ) −  𝜑𝜑𝑖𝑖(𝐼𝐼𝑔𝑔𝑔𝑔 )||        𝑖𝑖                                            (6) 

3.3.3 Adversarial Loss   
The adversarial loss 𝐿𝐿a  of the Base-Net make the occlusion-free face image 𝐼𝐼o𝑖𝑖  as close as 
possible to the target image  𝐼𝐼𝑔𝑔𝑔𝑔, and generated realistic results. It can be defined as:  

                                 𝐿𝐿a = 𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺1

𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷1 𝔼𝔼[log (𝐷𝐷1(𝐼𝐼o,  𝐼𝐼gt))+[log(1− 𝐷𝐷1(𝐼𝐼o,𝐺𝐺1 (𝐼𝐼o))]                   

(7) 

3.4 Stage- II: Refine-Net 
The GANs have gained considerable attention due to their outstanding data generation 
capability. However, as GAN has limited learning capacity, considering the uncertainty of 
filling the missing pixel with semantically plausible and visually pleasing contents, one GAN 
model may not restore the more delicate texture details. As a result, the face dynamics of the 
produced images may not be realistic enough. We further process Stage-I results by additional 
GAN called Refine-Net to generate more realistic images to curb this problem. The Refine-Net 
at Stage-II adds the necessary refinements to the image generated in the first stage to improve the 
visual quality further and condense the blurred texture and the inconsistent boundary with the 
surrounding area. The Refine-Net at Stage-II proves to help further restore the better-quality 
details to generate a more precise, smoother, and coherent result, especially for the affected 
region. 

Generator 𝐺𝐺2  in the Refine-Net at Stage-II is quite similar to the generator 𝐺𝐺1  in the 
Base-Net. We propose the generator 𝐺𝐺2 to brings the initial result (Stage-I result 𝐼𝐼o𝑖𝑖 ) closer to 
the ground truth by rectifying what is missing or wrong in the initial result. To achieve this, we 
feed 𝐼𝐼o  (Stage-I input) again with  𝐼𝐼o𝑖𝑖  (Stage-I output) as a concatenated input into the 
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generator𝐺𝐺2 , which generates the final result 𝐼𝐼o
𝑓𝑓  with more photorealistic details in the 

recovered area.  We feed  𝐼𝐼o (Stage-I input) again to enforce edge consistency at the affected 
region boundary, further increasing the generated face image's visual quality. The Patch-GAN 
discriminator 𝐷𝐷2  of the Refine-Net shares the same architecture as 𝐷𝐷1  in the Base-Net. 
Discriminator 𝐷𝐷2 slides a window size of 32 x 32 pixels over 𝐼𝐼o

𝑓𝑓and produces a score that 
shows whether the patch in the face image is real or generated.  

3.5 Refine-Net Loss Function 
Similar to the objective function in Stage-I, we also incorporate the reconstruction loss 𝐿𝐿𝑟𝑟, a 
perceptual loss 𝐿𝐿𝑝𝑝 and an adversarial loss 𝐿𝐿𝑎𝑎 in Stage-II. The Refine-Net loss at Stage-II can 
be expressed as: 

                                                    𝐿𝐿stage−II = 𝜕𝜕𝜕𝜕r + 𝛽𝛽𝐿𝐿𝑝𝑝 + 𝐿𝐿a                                                (8) 

The adversarial loss 𝐿𝐿a of the Refine-Net make the recovered face image 𝐼𝐼𝑖𝑖
𝑓𝑓 as close as 

possible to the target image  𝐼𝐼𝑔𝑔𝑔𝑔, and generated realistic results. It can be defined as:  

                             𝐿𝐿a = 𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺2

𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷2 𝔼𝔼[log (𝐷𝐷2(𝐼𝐼𝑖𝑖

𝑓𝑓 ,  𝐼𝐼gt))+[log(1− 𝐷𝐷2(𝐼𝐼𝑖𝑖
𝑓𝑓 ,𝐺𝐺2 (𝐼𝐼𝑖𝑖

𝑓𝑓))]                 (9) 

3.6 Joint Loss Function 
Our joint loss improves visually realistic, sharp, and semantically compatible results can be 
expressed as follows: 

                                                           𝐿𝐿𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 =  𝜕𝜕𝜕𝜕r+𝛽𝛽𝛽𝛽𝑝𝑝 + 𝐿𝐿𝑎𝑎                                            (10) 

Where α and β are used to adjust the effect of reconstruction and perceptual loss, respectively. 

4.  Experiments 
We first explain the implementation and training settings of the proposed model in this section. 
Afterward, we introduce the baseline models. Then, we define datasets and assessment metrics. 

4.1 Implementation Details  
The Base-Net takes a 256x256 resolution starting occluded face image and generates an 
occlusion-free face image of the same resolutions. The Refine-Net takes the Base-Net's output 
face image as input and generates a more real occlusion-free face image with 256x256 
resolutions. The proposed two-stage scheme is implemented using Tensorflow deep learning 
library [28] and is trained with Nvidia GTX 1080Ti GPU to generate 256x256 resolution images. 
Adam solver [29] trains both stage models (Base-Net and Refine-Net) alternatively for 1000 
epochs with a batch size 10. We trained both the stage models for different 𝜕𝜕 and 𝛽𝛽 values. For 
Stage-I, we used  𝜕𝜕 =100 and 𝛽𝛽 = 33, and for Stage-II, we used  𝜕𝜕 =10 and 𝛽𝛽 = 3.3. 

4.2 Training Details (Stabilizing the Training Process of FD-StackGAN) 
Although GANs have achieved some incredible results, stable GAN training is a crucial 
problem. Thus, to avoid unstable GAN training, we used two time-scale update rule (TTUR) 
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[30] approaches to stabilize FD-StackGAN. Two time-scale update rule approaches use 
diverse learning levels for the generator and discriminator networks to reach a Nash 
equilibrium status [31]. We employ the learning rate of 0.0001 for the generator network and 
0.0004 for the discriminator network in both stages. Using different learning rates for 
generator network and discriminator network updates, GAN training becomes more stable 
because a higher learning rate eases the regularized discriminator's slow learning problem.  

4.3 Comparison with Baseline Methods 
We compare the performance of the proposed model with the following baseline approaches to 
demonstrate qualitative and quantitative effects:  

 GLCM [9]: A model can complete random size missing regions via globally and locally 
reliable information. 

 GCA [16]: A model for generative image inpainting with novel contextual attention layer 
to copy-paste similar feature patches from visible regions to the missing regions. 

 EdgeConnect [18]: A GAN-based two-stage model recovers the image based on 
hallucinated edge information from an edge generator network. 

4.4 Dataset 
We conducted experiments on synthetically generated face images and the real-world face 
images datasets. The configurations of the two datasets are presented briefly below. 

4.4.1 Synthetic Dataset  
Occluded face images and corresponding occlusion-free face images are needed to train the 
proposed model. We train the proposed on our synthesized dataset due to the difficulty in 
gathering sufficient occluded face images with their corresponding occlusion-free face images. 
We have synthesized a new face images dataset of 20,000 samples using the available 
Large-scale Celeb Faces Attributes Dataset (CelebA) [32]. First, we create a synthetic face 
image dataset by adding different occlusion masks using Adobe Photoshop 2018. Fig. 3 shows 
sample images of the occlusion mask used in this dataset. Then we create the binary mask of 
the corresponding occluded region. Each image in our synthetic dataset has a resolution of 
256x256. Fig. 4 shows some sample images and their corresponding masks from this dataset. 

4.4.2 Real-world Dataset  
To demonstrate the proposed method's effectiveness on real-world face images, we build a 
dataset of real-world images randomly taken from the Internet. While building this occluded 
face images database, we took all possible care to guarantee that the occluded face images 
gathered were diverse in size, shape, structure, and position regarding the occlusion mask. 
These occluded face images are only used for testing (evaluation) purposes. Note that no 
ground truth exists for real occluded face images because they are downloaded from the 
Internet.  

4.5 Evaluation Metrics 
Although the GAN-based models have attained great success in numerous computer vision 
applications, it is still difficult to evaluate which method (s) is better than other methods 
because there is no standard defined function for quantitative evaluation, which hurts the GAN 
performance. Nevertheless, to quantitatively and objectively analyze the accuracy or 
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(a) 

(b) 

(c) 

effectiveness of the proposed system, we choose various numerical evaluation metrics such as 
Structural Similarity (SSIM) [33] that guesses the all-inclusive similarity between the 
reconstructed and the target face images, Peak Signal-to-Noise Ratio (PSNR) that measures 
the difference in pixel values between the reconstructed and the target face images, Mean 
Square Error (MSE) that calculates the average squared difference between the reconstructed 
and the target face images, Naturalness Image Quality Evaluator (NIQE) [34] that measure the 
quality of image, and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)  [35] 
that calculates naturalness of image. For PSNR and SSIM, higher values indicate superior 
efficiency, while for MSE, NIQE, and BRISQUE, the smaller, the better. 
 

 

 
Fig. 3. Some sample images of the occlusion mask used in the synthetic dataset. 

 

 

 
Fig. 4. (a) CelebA image, (b) CelebA image with occlusion mask, and (c) binary mask. 

 
 

       

5.  Comparison and Discussions 
This section analyzes the efficiency of the proposed scheme in qualitative and quantitative 
results. We compare and discuss the proposed model's performances with the baseline models 
on real-world face images.  

5.1 Qualitative Results 
In the absence of a robust and consistent evaluation method, the sample quality is mainly 
evaluated based on the sample's visual fidelity generated by the GAN-based model. Therefore, 
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FD-StackGAN GLCM [9] EdgeConnect [18] Input   GCA [16] 

we openly displayed the input occluded face images and the output occluded-free face images in 
the qualitative experiments' test set. For this, we present the qualitative outcomes of the 
proposed model and the models presented in Section 4.3 (i.e., GLCM [9], GCA [16], and 
EdgeConnect [18]).  Fig. 5 shows some exemplar results generated by various models. The first 
column of Fig. 5 shows the input face images with occlusion mask, while columns 2, 3, and 4 
show the samples generated by GLCM, GCA, and EdgeConnect, respectively, with column 5 
show the samples generated by the proposed model.  

It can be observed in Fig. 5 that the results of the model are more realistic and smoother than 
the other three models generated samples, which show visual discrepancies such as blurriness 
artifacts and the unpleasant boundaries in the recovered region that also show inconsistency with 
the surrounding area. The proposed model generates visually pleases realistic results because it 
tries to synthesize more details in the affected region. 

 

    

       

 

 

 
 

Fig. 5. Visual comparison of our model with baseline models on real-world faces images. As we can see 
in this figure, the proposed model has better visual results than the other models. 
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5.2 Quantitative Results 
Table 1 shows a quantitative comparison of the proposed model (FD-StackGAN) with 
baseline representative models (GLCM, GCA, and EdgeConnect). We measure the 
quantitative performance using five famous evaluation metrics: 1) SSIM, 2) PSNR, 3) MSE, 4) 
NIQE, and 5) BRISQUE). The quantitative score via SSIM, PSNR, and MSE is calculated 
using the synthetic test dataset results because no ground-truth exists for real-world occluded 
face images since they are downloaded from the Internet, while the quantitative score via 
NIQE and BRISQE is calculated using the results from the real-world test images. The values 
in Table 1 were averaged scores obtained from individual test images. From Table 1, it has 
been observed that the proposed model generates semantically consistent and visually 
plausible face images without occlusion masks, which can help to improve the performance of 
many computer vision algorithms for face identification/recognition purposes in future studies. 
The multi-stage proposed approach with careful selection of a new refine loss, e.g., 
reconstruction loss (pix-wise loss for low-level features, and Structural Similarity loss for 
high-level features), perceptual loss, and adversarial loss allow in removing the challenging 
and complex occlusion masks with various structure, size, shape, type, and position. The 
proposed model shows inferior results compared to other methods on the BRISQUE 
measurement yet shows superior performance to other assessment metrics.  

Please refer to our supplementary material for more quantitative results compared to 
computational efficiency between the proposed model and baseline models. Finally, we 
present a quantitative analysis that shows how the proposed model is different from the 
baseline models. Computational efficiency is an essential practical evaluation metric. It helps 
researchers monitor the training process and diagnose problems early on or perform early 
stopping the model during training. 
 

Table 1. Quantitative results comparison of our model with baseline models 
Methods SSIM↑ PSNR↑ MSE↓ NIQE↓ BRISQUE↓ 

GLCM [9] 0.763 21.953 2329.062 4.754 34.106 
GCA [16] 0.797 15.469 2316.839 4.951 32.761 

EdgeConnect [18] 0.561 15.848 2450.889 16.991 36.426 
FD-StackGAN 0.981 32.803 34.145 4.499 42.504 

 
 

5.3 Additional Results 
Although we have trained the proposed model using the occlusion masks shown in Fig. 3 that 
do not contain cases of occlusion masks used in this experiment. Here, we conducted 
experiments for some cases of occlusion masks to see how the proposed model works for very 
different types of occlusion masks from those used in the training occlusion images, as can be 
seen in the first of rows of Fig. 6.  As expected, the proposed model produces worse results for 
real-world face images. The typical failure case behind this is the use of the occlusion masks, 
which have very different structure types and have very different positions in the face images 
than the occlusion masks used in the synthetic training dataset that mostly covered the regions 
around the eyes. 
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Fig. 6. The performance of the proposed model for real face images with occlusion masks that have very 

different structure and location in the face images than the occlusion masks used in the synthetic 
training dataset. 

5.4 Ablation Studies 
In this subsection, we present the ablation studies to understand the usefulness of using a 
two-stage network against a single-stage network, and the influence of using a combined loss 
function.  

5.4.1 Comparison between Two Stage Network and Single Stage Network 
To demonstrate the effectiveness of using a two-stage network against a single-stage, we 
perform the ablation study. For this, we make a qualitative and quantitative comparison by 
training the proposed model with a single-stage network and with a two-stage network. The 
single-stage model is represented as 𝐺𝐺1+𝐷𝐷1 and the two-stage model is represented as 
𝐺𝐺1+𝐷𝐷1+𝐺𝐺2+𝐷𝐷2. As shown in Fig. 7, the proposed model trained with the two-stage can 
generate more photorealistic results with minimum deformation artifacts than the single-stage 
results. 

 The single-stage network generated results are generally blurry with several defects and 
missing details, especially for occluded regions (red rectangle are used to specify the areas and 
locations of some undesired artifacts). The two-stage network generated results contain more 
photorealistic details with minimum undesired artifacts. The two-stage network generates 
more natural-looking images than a single-stage because the second-stage works as a 
Refine-Net, i.e., the second-stage corrects what is wrong or missing in the initially recovered 
regions (blue rectangle are used to specify the areas and locations of some refinement 
corrections). We also present the quantitative scores of a two-stage network and a single-stage 
network in SSIM, PSNR, MSE, NIQE, and BRISQUE, as shown in Table 2. The numerical 
scores in Table 2 clearly showed the advantages of a two-stage network's refinement process 
over a single-stage model. The two-stage network performed slightly inferior to the 
single-stage on the SSIM measurement because it is a well-known fact that blurry images 
often get good SSIM scores despite being less photorealistic and convincing. Yet, the 
two-stage network is superior to the single-stage on other quantitative measurements.  
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Results with              
Base-Net + Refine-Net 

Input image Results with Base-Net 
 

 

    

 

Fig. 7. Effect of using multi-stage networks. From left to right: Input image, results using only Base-Net, 
and results using both Base-Net + Refine-Net. 

 
 
 

Table 2. Quantitative results of a single-stage network and a two-stage network. 
Methods SSIM↑ PSNR↑ MSE↓ NIQE↓ BRISQUE↓ 

Single-stage network 0.963 30.128 68.860 4.3315 40.2936 
Two-stage network 0.981 32.803 34.145 4.3315 40.2936 

5.4.2 Integrated Loss Function 

Also, we perform the ablation study for joint loss function. For this, we present the ablation 
studies to analyze the performance of different loss functions. We run the ablation studies to 
separate the result of pixel-wise reconstruction loss 𝐿𝐿𝑙𝑙1 as a reconstruction loss 𝐿𝐿𝑟𝑟. Fig. 8 (b) 
shows the sample results with a reconstruction loss 𝐿𝐿𝑙𝑙1. It seems incapable of recovering the 
structure of complex vital face semantics, the especially recovered area under the occlusion 
mask, e.g., area around both eyes. To recover the accurate semantic structure, similarity loss 
𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is added with a pixel-wise reconstruction loss 𝐿𝐿𝑙𝑙1 as a reconstruction loss.  
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Fig. 8 (c) shows the results with combined reconstruction loss (𝐿𝐿𝑙𝑙1+𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ), which 
successfully recovers the complex vital face semantics of the synthesized face image better than 
the previous approach but still shows some artifacts. To remove the undesired artifacts and 
makes the synthesized face image more perceptually closer to the ground truth, we have added 
the perceptual loss 𝐿𝐿𝑃𝑃 with reconstruction loss (𝐿𝐿𝑙𝑙1+𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆). Fig. 8 (d) shows the results with 
joint loss functions (𝐿𝐿𝑙𝑙1+ 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  +𝐿𝐿𝑃𝑃 ), which tackle the artifacts well and improve the 
performance. Table 3 presents the quantitative scores under various loss function settings.  
Note: This joint loss functions (𝐿𝐿𝑙𝑙1+ 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +𝐿𝐿𝑃𝑃) shows the Base-Net results only.  

 

 

 
                 Input image                         𝐿𝐿𝑙𝑙1                                            𝐿𝐿𝑙𝑙1+𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆                 𝐿𝐿𝑙𝑙1+𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐿𝐿𝑃𝑃 

Fig. 8. Effects of different loss functions for the Base-Net. From left to right: Input image, results with 
𝑳𝑳𝒍𝒍𝟏𝟏 reconstruction loss only, results with 𝑳𝑳𝒍𝒍𝟏𝟏+𝑳𝑳𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 joint reconstruction loss, and results with             

𝑳𝑳𝒍𝒍𝟏𝟏+ 𝑳𝑳𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 +𝑳𝑳𝑷𝑷  joint reconstruction loss. 

 
Table 3.  Quantitative results under various loss function settings. 

Methods SSIM↑ PSNR↑ MSE↓ NIQE↓ BRISQUE↓ 

𝐿𝐿𝑙𝑙1loss 0.984 32.346 43.238 4.7284 41.9486 
𝐿𝐿𝑙𝑙1+𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  loss 0.989 32.263 45.501 4.6846 42.1193 

𝐿𝐿𝑙𝑙1+ 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +𝐿𝐿𝑃𝑃  loss 0.963 30.128 68.860 4.3315 40.2936 

6.  Conclusion and Future Work 
This research article proposed an efficient method for face image de-occlusion. The proposed 
model automatically removes the occlusion mask from the face image and synthesizes the 
damaged region with compelling details while retaining its original structure. Despite being 
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trained on a synthetic dataset, its synthesized face images show image quality comparable to 
other image synthesis methods, which only deal with similar style mask objects. In contrast with 
earlier methods, the technique here is quite flexible to handle numerous regions containing 
completely different structures and surrounding backgrounds. In addition, no restrictions are 
imposed on the topology of the affected region to be inpainted, i.e., the proposed model can 
successfully remove the numerous types' occlusion masks in the face images by creating 
semantically useful and visually plausible content for the affected regions. We also analyze the 
proposed model performance quantitatively and qualitatively and show that the proposed model 
can produce structurally consistent results of higher perceptual quality.  In the future, we plan to 
extend this work to the videos domain. 
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