• Title/Summary/Keyword: Face detection range

Search Result 46, Processing Time 0.024 seconds

Detection of Faces Located at a Long Range with Low-resolution Input Images for Mobile Robots (모바일 로봇을 위한 저해상도 영상에서의 원거리 얼굴 검출)

  • Kim, Do-Hyung;Yun, Woo-Han;Cho, Young-Jo;Lee, Jae-Jeon
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.257-264
    • /
    • 2009
  • This paper proposes a novel face detection method that finds tiny faces located at a long range even with low-resolution input images captured by a mobile robot. The proposed approach can locate extremely small-sized face regions of $12{\times}12$ pixels. We solve a tiny face detection problem by organizing a system that consists of multiple detectors including a mean-shift color tracker, short- and long-rage face detectors, and an omega shape detector. The proposed method adopts the long-range face detector that is well trained enough to detect tiny faces at a long range, and limiting its operation to only within a search region that is automatically determined by the mean-shift color tracker and the omega shape detector. By focusing on limiting the face search region as much as possible, the proposed method can accurately detect tiny faces at a long distance even with a low-resolution image, and decrease false positives sharply. According to the experimental results on realistic databases, the performance of the proposed approach is at a sufficiently practical level for various robot applications such as face recognition of non-cooperative users, human-following, and gesture recognition for long-range interaction.

  • PDF

Fast and Robust Face Detection based on CNN in Wild Environment (CNN 기반의 와일드 환경에 강인한 고속 얼굴 검출 방법)

  • Song, Junam;Kim, Hyung-Il;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1310-1319
    • /
    • 2016
  • Face detection is the first step in a wide range of face applications. However, detecting faces in the wild is still a challenging task due to the wide range of variations in pose, scale, and occlusions. Recently, many deep learning methods have been proposed for face detection. However, further improvements are required in the wild. Another important issue to be considered in the face detection is the computational complexity. Current state-of-the-art deep learning methods require a large number of patches to deal with varying scales and the arbitrary image sizes, which result in an increased computational complexity. To reduce the complexity while achieving better detection accuracy, we propose a fully convolutional network-based face detection that can take arbitrarily-sized input and produce feature maps (heat maps) corresponding to the input image size. To deal with the various face scales, a multi-scale network architecture that utilizes the facial components when learning the feature maps is proposed. On top of it, we design multi-task learning technique to improve detection performance. Extensive experiments have been conducted on the FDDB dataset. The experimental results show that the proposed method outperforms state-of-the-art methods with the accuracy of 82.33% at 517 false alarms, while improving computational efficiency significantly.

Invariant Range Image Multi-Pose Face Recognition Using Fuzzy c-Means

  • Phokharatkul, Pisit;Pansang, Seri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1244-1248
    • /
    • 2005
  • In this paper, we propose fuzzy c-means (FCM) to solve recognition errors in invariant range image, multi-pose face recognition. Scale, center and pose error problems were solved using geometric transformation. Range image face data was digitized into range image data by using the laser range finder that does not depend on the ambient light source. Then, the digitized range image face data is used as a model to generate multi-pose data. Each pose data size was reduced by linear reduction into the database. The reduced range image face data was transformed to the gradient face model for facial feature image extraction and also for matching using the fuzzy membership adjusted by fuzzy c-means. The proposed method was tested using facial range images from 40 people with normal facial expressions. The output of the detection and recognition system has to be accurate to about 93 percent. Simultaneously, the system must be robust enough to overcome typical image-acquisition problems such as noise, vertical rotated face and range resolution.

  • PDF

Face Detection for Cast Searching in Video (비디오 등장인물 검색을 위한 얼굴검출)

  • Paik Seung-ho;Kim Jun-hwan;Yoo Ji-sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.983-991
    • /
    • 2005
  • Human faces are commonly found in a video such as a drama and provide useful information for video content analysis. Therefore, face detection plays an important role in applications such as face recognition, and face image database management. In this paper, we propose a face detection algorithm based on pre-processing of scene change detection for indexing and cast searching in video. The proposed algorithm consists of three stages: scene change detection stage, face region detection stage, and eyes and mouth detection stage. Experimental results show that the proposed algorithm can detect faces successfully over a wide range of facial variations in scale, rotation, pose, and position, and the performance is improved by $24\%$with profile images comparing with conventional methods using color components.

Face Detection Based on Distribution Map (분포맵에 기반한 얼굴 영역 검출)

  • Cho Han-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.11-22
    • /
    • 2006
  • Recently face detection has actively been researched due to its wide range of applications, such as personal identification and security systems. In this paper, a new face detection method based on the distribution map is proposed. Face-like regions are first extracted by applying the skin color map with the frequency to a color image and then, possible eye regions are determined by using the pupil color distribution map within the face-like regions. This enables the reduction of space for finding facial features. Eye candidates are detected by means of a template matching method using weighted window, which utilizes the correlation values of the luminance component and chrominance components as feature vectors. Finally, a cost function for mouth detection and location information between the facial features are applied to each pair of the eye candidates for face detection. Experimental results show that the proposed method can achieve a high performance.

  • PDF

Hardware Implementation for Stabilization of Detected Face Area (검출된 얼굴 영역 안정화를 위한 하드웨어 구현)

  • Cho, Ho-Sang;Jang, Kyoung-Hoon;Kang, Hyun-Jung;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • This paper presents a hardware-implemented face regions stabilization algorithm that stabilizes facial regions using the locations and sizes of human faces found by a face detection system. Face detection algorithms extract facial features or patterns determining the presence of a face from a video source and detect faces via a classifier trained on example faces. But face detection results has big variations in the detected locations and sizes of faces by slight shaking. To address this problem, the high frequency reduce filter that reduces variations in the detected face regions by taking into account the face range information between the current and previous video frames are implemented in addition to center distance comparison and zooming operations.

LAB color illumination revisions for the improvement of non-proper image (비정규 영상의 개선을 위한 LAB 컬러조명보정)

  • Na, Jong-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.191-197
    • /
    • 2010
  • Many does an application and application but the image analysis of face detection considerably is difficult. In order for with effect of the illumination which is irregular in the present paper America the illumination to range evenly in the face which is detected, detects a face territory, Complemented the result which detects only the front face of existing. With LAB color illumination revisions compared in Adaboost face detection of existing and 32% was visible the face detection result which improves. Bought two images which are input and executed Glassfire label rings. Compared Area critical price and became the area of above critical value and revised from RGB smooth anger and LAB images with LCFD system algorithm. The operational conversion image which is extracted like this executed a face territory detection in the object. In order to extract the feature which is necessary to a face detection used AdaBoost algorithms. The face territory remote login with the face territory which tilts in the present paper, until Multi-view face territory detections was possible. Also relationship without high detection rate seems in direction of illumination, With only the public PC application is possible was given proof user authentication field etc.

Development of Tracking Equipment for Real­Time Multiple Face Detection (실시간 복합 얼굴 검출을 위한 추적 장치 개발)

  • 나상동;송선희;나하선;김천석;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1823-1830
    • /
    • 2003
  • This paper presents a multiple face detector based on a robust pupil detection technique. The pupil detector uses active illumination that exploits the retro­reflectivity property of eyes to facilitate detection. The detection range of this method is appropriate for interactive desktop and kiosk applications. Once the location of the pupil candidates are computed, the candidates are filtered and grouped into pairs that correspond to faces using heuristic rules. To demonstrate the robustness of the face detection technique, a dual mode face tracker was developed, which is initialized with the most salient detected face. Recursive estimators are used to guarantee the stability of the process and combine the measurements from the multi­face detector and a feature correlation tracker. The estimated position of the face is used to control a pan­tilt servo mechanism in real­time, that moves the camera to keep the tracked face always centered in the image.

Real-Time Multiple Face Detection Using Active illumination (능동적 조명을 이용한 실시간 복합 얼굴 검출)

  • 한준희;심재창;설증보;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.155-160
    • /
    • 2003
  • This paper presents a multiple face detector based on a robust pupil detection technique. The pupil detector uses active illumination that exploits the retro-reflectivity property of eyes to facilitate detection. The detection range of this method is appropriate for interactive desktop and kiosk applications. Once the location of the pupil candidates are computed, the candidates are filtered and grouped into pairs that correspond to faces using heuristic rules. To demonstrate the robustness of the face detection technique, a dual mode face tracker was developed, which is initialized with the most salient detected face. Recursive estimators are used to guarantee the stability of the process and combine the measurements from the multi-face detector and a feature correlation tracker. The estimated position of the face is used to control a pan-tilt servo mechanism in real-time, that moves the camera to keep the tracked face always centered in the image.

  • PDF

A Face Detection Method using Gradual Expansion of Skin Color Range (피부색 범위의 점진적 확장에 의한 얼굴 검출 방법)

  • 문대성;한영미;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.5
    • /
    • pp.396-405
    • /
    • 2001
  • Usually it is difficult to extract facial regions in a complex image by using only a predetermined skin color. Expecially, it is more difficult to separate them from background regions that contains the skin color. This paper proposes a face detection method by using gradual range expansion of an initial skin color. By analyzing the skin color distribution several images that are collected in the Web, the range of dense distribution is selected as the range of the initial skin color. In each expanding step, expanded regions in the image are tested whether they can be actual facial regions by using the information of the shape of general face and the location of face organs. The shape of general face is modeled as an ellipse and the aspect ratio of its bounding box is used to define the shape constraint for faces. Only the eyes and lips are used as the face organs, which can be easily detected by extracting horizontal edges in the expanded regions. through several experiments, it is confirmed that the proposed method can detect exactly not only faces having partly distorted regions by highlight but also faces neighboring similar color regions.

  • PDF