• Title/Summary/Keyword: Face Pose Classification

Search Result 19, Processing Time 0.022 seconds

Study of Posture Evaluation Method in Chest PA Examination based on Artificial Intelligence (인공지능 기반 흉부 후전방향 검사에서 자세 평가 방법에 관한 연구)

  • Ho Seong Hwang;Yong Seok Choi;Dae Won Lee;Dong Hyun Kim;Ho Chul Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.167-175
    • /
    • 2023
  • Chest PA is the basic examination of radiographic imaging. Moreover, Chest PA's demands are constantly increasing because of the Increase in respiratory diseases. However, it is not meeting the demand due to problems such as a shortage of radiological technologist, sexual shame caused by patient contact, and the spread of infectious diseases. There have been many cases of using artificial intelligence to solve this problem. Therefore, the purpose of this research is to build an artificial intelligence dataset of Chest PA and to find a posture evaluation method. To construct the posture dataset, the posture image is acquired during actual and simulated examination and classified correct and incorrect posture of the patient. And to evaluate the artificial intelligence posture method, a posture estimation algorithm is used to preprocess the dataset and an artificial intelligence classification algorithm is applied. As a result, Chest PA posture dataset is validated with in over 95% accuracy in all artificial intelligence classification and the accuracy is improved through the Top-Down posture estimation algorithm AlphaPose and the classification InceptionV3 algorithm. Based on this, it will be possible to build a non-face-to-face automatic Chest PA examination system using artificial intelligence.

Multimodal Biometrics Recognition from Facial Video with Missing Modalities Using Deep Learning

  • Maity, Sayan;Abdel-Mottaleb, Mohamed;Asfour, Shihab S.
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.6-29
    • /
    • 2020
  • Biometrics identification using multiple modalities has attracted the attention of many researchers as it produces more robust and trustworthy results than single modality biometrics. In this paper, we present a novel multimodal recognition system that trains a deep learning network to automatically learn features after extracting multiple biometric modalities from a single data source, i.e., facial video clips. Utilizing different modalities, i.e., left ear, left profile face, frontal face, right profile face, and right ear, present in the facial video clips, we train supervised denoising auto-encoders to automatically extract robust and non-redundant features. The automatically learned features are then used to train modality specific sparse classifiers to perform the multimodal recognition. Moreover, the proposed technique has proven robust when some of the above modalities were missing during the testing. The proposed system has three main components that are responsible for detection, which consists of modality specific detectors to automatically detect images of different modalities present in facial video clips; feature selection, which uses supervised denoising sparse auto-encoders network to capture discriminative representations that are robust to the illumination and pose variations; and classification, which consists of a set of modality specific sparse representation classifiers for unimodal recognition, followed by score level fusion of the recognition results of the available modalities. Experiments conducted on the constrained facial video dataset (WVU) and the unconstrained facial video dataset (HONDA/UCSD), resulted in a 99.17% and 97.14% Rank-1 recognition rates, respectively. The multimodal recognition accuracy demonstrates the superiority and robustness of the proposed approach irrespective of the illumination, non-planar movement, and pose variations present in the video clips even in the situation of missing modalities.

A Head Gesture Recognition Method based on Eigenfaces using SOM and PRL (SOM과 PRL을 이용한 고유얼굴 기반의 머리동작 인식방법)

  • Lee, U-Jin;Gu, Ja-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.971-976
    • /
    • 2000
  • In this paper a new method for head gesture recognition is proposed. A the first stage, face image data are transformed into low dimensional vectors by principal component analysis (PCA), which utilizes the high correlation between face pose images. The a self organization map(SM) is trained by the transformed face vectors, in such a that the nodes at similar locations respond to similar poses. A sequence of poses which comprises each model gesture goes through PCA and SOM, and the result is stored in the database. At the recognition stage any sequence of frames goes through the PCA and SOM, and the result is compared with the model gesture stored in the database. To improve robustness of classification, probabilistic relaxation labeling(PRL) is used, which utilizes the contextural information imbedded in the adjacent poses.

  • PDF

Class Discriminating Feature Vector-based Support Vector Machine for Face Membership Authentication (얼굴 등록자 인증을 위한 클래스 구별 특징 벡터 기반 서포트 벡터 머신)

  • Kim, Sang-Hoon;Seol, Tae-In;Chung, Sun-Tae;Cho, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.112-120
    • /
    • 2009
  • Face membership authentication is to decide whether an incoming person is an enrolled member or not using face recognition, and basically belongs to two-class classification where support vector machine (SVM) has been successfully applied. The previous SVMs used for face membership authentication have been trained and tested using image feature vectors extracted from member face images of each class (enrolled class and unenrolled class). The SVM so trained using image feature vectors extracted from members in the training set may not achieve robust performance in the testing environments where configuration and size of each class can change dynamically due to member's joining or withdrawal as well as where testing face images have different illumination, pose, or facial expression from those in the training set. In this paper, we propose an effective class discriminating feature vector-based SVM for robust face membership authentication. The adopted features for training and testing the proposed SVM are chosen so as to reflect the capability of discriminating well between the enrolled class and the unenrolled class. Thus, the proposed SVM trained by the adopted class discriminating feature vectors is less affected by the change in membership and variations in illumination, pose, and facial expression of face images. Through experiments, it is shown that the face membership authentication method based on the proposed SVM performs better than the conventional SVM-based authentication methods and is relatively robust to the change in the enrolled class configuration.

Discriminant Metric Learning Approach for Face Verification

  • Chen, Ju-Chin;Wu, Pei-Hsun;Lien, Jenn-Jier James
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.742-762
    • /
    • 2015
  • In this study, we propose a distance metric learning approach called discriminant metric learning (DML) for face verification, which addresses a binary-class problem for classifying whether or not two input images are of the same subject. The critical issue for solving this problem is determining the method to be used for measuring the distance between two images. Among various methods, the large margin nearest neighbor (LMNN) method is a state-of-the-art algorithm. However, to compensate the LMNN's entangled data distribution due to high levels of appearance variations in unconstrained environments, DML's goal is to penalize violations of the negative pair distance relationship, i.e., the images with different labels, while being integrated with LMNN to model the distance relation between positive pairs, i.e., the images with the same label. The likelihoods of the input images, estimated using DML and LMNN metrics, are then weighted and combined for further analysis. Additionally, rather than using the k-nearest neighbor (k-NN) classification mechanism, we propose a verification mechanism that measures the correlation of the class label distribution of neighbors to reduce the false negative rate of positive pairs. From the experimental results, we see that DML can modify the relation of negative pairs in the original LMNN space and compensate for LMNN's performance on faces with large variances, such as pose and expression.

Multi-classifier Decision-level Fusion for Face Recognition (다중 분류기의 판정단계 융합에 의한 얼굴인식)

  • Yeom, Seok-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.77-84
    • /
    • 2012
  • Face classification has wide applications in intelligent video surveillance, content retrieval, robot vision, and human-machine interface. Pose and expression changes, and arbitrary illumination are typical problems for face recognition. When the face is captured at a distance, the image quality is often degraded by blurring and noise corruption. This paper investigates the efficacy of multi-classifier decision level fusion for face classification based on the photon-counting linear discriminant analysis with two different cost functions: Euclidean distance and negative normalized correlation. Decision level fusion comprises three stages: cost normalization, cost validation, and fusion rules. First, the costs are normalized into the uniform range and then, candidate costs are selected during validation. Three fusion rules are employed: minimum, average, and majority-voting rules. In the experiments, unfocusing and motion blurs are rendered to simulate the effects of the long distance environments. It will be shown that the decision-level fusion scheme provides better results than the single classifier.

Training Network Design Based on Convolution Neural Network for Object Classification in few class problem (소 부류 객체 분류를 위한 CNN기반 학습망 설계)

  • Lim, Su-chang;Kim, Seung-Hyun;Kim, Yeon-Ho;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.144-150
    • /
    • 2017
  • Recently, deep learning is used for intelligent processing and accuracy improvement of data. It is formed calculation model composed of multi data processing layer that train the data representation through an abstraction of the various levels. A category of deep learning, convolution neural network is utilized in various research fields, which are human pose estimation, face recognition, image classification, speech recognition. When using the deep layer and lots of class, CNN that show a good performance on image classification obtain higher classification rate but occur the overfitting problem, when using a few data. So, we design the training network based on convolution neural network and trained our image data set for object classification in few class problem. The experiment show the higher classification rate of 7.06% in average than the previous networks designed to classify the object in 1000 class problem.

Non-face-to-face online home training application study using deep learning-based image processing technique and standard exercise program (딥러닝 기반 영상처리 기법 및 표준 운동 프로그램을 활용한 비대면 온라인 홈트레이닝 어플리케이션 연구)

  • Shin, Youn-ji;Lee, Hyun-ju;Kim, Jun-hee;Kwon, Da-young;Lee, Seon-ae;Choo, Yun-jin;Park, Ji-hye;Jung, Ja-hyun;Lee, Hyoung-suk;Kim, Joon-ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.577-582
    • /
    • 2021
  • Recently, with the development of AR, VR, and smart device technologies, the demand for services based on non-face-to-face environments is also increasing in the fitness industry. The non-face-to-face online home training service has the advantage of not being limited by time and place compared to the existing offline service. However, there are disadvantages including the absence of exercise equipment, difficulty in measuring the amount of exercise and chekcing whether the user maintains an accurate exercise posture or not. In this study, we develop a standard exercise program that can compensate for these shortcomings and propose a new non-face-to-face home training application by using a deep learning-based body posture estimation image processing algorithm. This application allows the user to directly watch and follow the trainer of the standard exercise program video, correct the user's own posture, and perform an accurate exercise. Furthermore, if the results of this study are customized according to their purpose, it will be possible to apply them to performances, films, club activities, and conferences

A Real-time Vehicle Localization Algorithm for Autonomous Parking System (자율 주차 시스템을 위한 실시간 차량 추출 알고리즘)

  • Hahn, Jong-Woo;Choi, Young-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.31-38
    • /
    • 2011
  • This paper introduces a video based traffic monitoring system for detecting vehicles and obstacles on the road. To segment moving objects from image sequence, we adopt the background subtraction algorithm based on the local binary patterns (LBP). Recently, LBP based texture analysis techniques are becoming popular tools for various machine vision applications such as face recognition, object classification and so on. In this paper, we adopt an extension of LBP, called the Diagonal LBP (DLBP), to handle the background subtraction problem arise in vision-based autonomous parking systems. It reduces the code length of LBP by half and improves the computation complexity drastically. An edge based shadow removal and blob merging procedure are also applied to the foreground blobs, and a pose estimation technique is utilized for calculating the position and heading angle of the moving object precisely. Experimental results revealed that our system works well for real-time vehicle localization and tracking applications.