• 제목/요약/키워드: Face Mask Recognition

검색결과 49건 처리시간 0.03초

Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern

  • Jeon, Tae-jun;Jang, Kyeong-uk;Lee, Seung-ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5605-5623
    • /
    • 2016
  • We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumination, noise, and aging. The proposed LCP algorithm produces excellent noise reduction and efficiency in removing unnecessary information from the face by extracting a face contour response using the LoG mask, whose behavior is similar to the human eye. Majority of reported algorithms search for face contour response information. On the other hand, our proposed LCP algorithm produces results expressing major facial information by applying the threshold to the search area with only 8 bits. However, the LCP algorithm produces results that express major facial information with only 8-bits by applying a threshold value to the search area. Therefore, compared to previous approaches, the LCP algorithm maintains a consistent accuracy under varying circumstances, and produces a high face recognition rate with a relatively small feature vector. The test results indicate that the LCP algorithm produces a higher facial recognition rate than the rate of human visual's recognition capability, and outperforms the existing methods.

Automatic Face Identification System Using Adaptive Face Region Detection and Facial Feature Vector Classification

  • Kim, Jung-Hoon;Do, Kyeong-Hoon;Lee, Eung-Joo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1252-1255
    • /
    • 2002
  • In this paper, face recognition algorithm, by using skin color information of HSI color coordinate collected from face images, elliptical mask, fratures of face including eyes, nose and mouth, and geometrical feature vectors of face and facial angles, is proposed. The proposed algorithm improved face region extraction efficacy by using HSI information relatively similar to human's visual system along with color tone information about skin colors of face, elliptical mask and intensity information. Moreover, it improved face recognition efficacy with using feature information of eyes, nose and mouth, and Θ1(ACRED), Θ2(AMRED) and Θ 3(ANRED), which are geometrical face angles of face. In the proposed algorithm, it enables exact face reading by using color tone information, elliptical mask, brightness information and structural characteristic angle together, not like using only brightness information in existing algorithm. Moreover, it uses structural related value of characteristics and certain vectors together for the recognition method.

  • PDF

Study On Masked Face Detection And Recognition using transfer learning

  • Kwak, NaeJoung;Kim, DongJu
    • International Journal of Advanced Culture Technology
    • /
    • 제10권1호
    • /
    • pp.294-301
    • /
    • 2022
  • COVID-19 is a crisis with numerous casualties. The World Health Organization (WHO) has declared the use of masks as an essential safety measure during the COVID-19 pandemic. Therefore, whether or not to wear a mask is an important issue when entering and exiting public places and institutions. However, this makes face recognition a very difficult task because certain parts of the face are hidden. As a result, face identification and identity verification in the access system became difficult. In this paper, we propose a system that can detect masked face using transfer learning of Yolov5s and recognize the user using transfer learning of Facenet. Transfer learning preforms by changing the learning rate, epoch, and batch size, their results are evaluated, and the best model is selected as representative model. It has been confirmed that the proposed model is good at detecting masked face and masked face recognition.

컨볼루션 오토인코더를 이용한 마스크 착용 얼굴 이미지 생성 (Generation of Masked Face Image Using Deep Convolutional Autoencoder)

  • 이승호
    • 한국정보통신학회논문지
    • /
    • 제26권8호
    • /
    • pp.1136-1141
    • /
    • 2022
  • 코로나19 팬데믹으로 인해 마스크 착용이 일상화되면서 마스크 착용 얼굴을 식별하는 얼굴인식 연구에 대한 중요도가 높아지고 있다. 안정된 얼굴인식 성능을 위해서는 인식 대상에 대한 풍부한 학습용 이미지 확보가 필요하지만 인물 별로 마스크 착용 얼굴 이미지를 다량 확보하는 것은 쉽지 않다. 본 논문에서는 마스크 미착용 얼굴 이미지에 가상의 마스크 패턴을 합성하는 새로운 방법을 제안한다. 제안 방법은 동일 인물에 대해 마스크 미착용 얼굴 이미지와 마스크 착용 얼굴 이미지를 쌍으로 컨볼루션 오토인코더에 입력하여 얼굴과 마스크의 기하학적 관계를 학습한다. 학습이 완료된 컨볼루션 오토인코더는 학습에 사용되지 않은 새로운 마스크 미착용 얼굴 이미지에 가상의 마스크 패턴을 자연스러운 형태로 합성해준다. 제안 방법은 고속으로 대량의 마스크 착용 얼굴 이미지를 생성할 수 있으며, 얼굴 특징점 추출에 기반하는 마스크 합성 방법에 비해 실용적이다.

FD-StackGAN: Face De-occlusion Using Stacked Generative Adversarial Networks

  • Jabbar, Abdul;Li, Xi;Iqbal, M. Munawwar;Malik, Arif Jamal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2547-2567
    • /
    • 2021
  • It has been widely acknowledged that occlusion impairments adversely distress many face recognition algorithms' performance. Therefore, it is crucial to solving the problem of face image occlusion in face recognition. To solve the image occlusion problem in face recognition, this paper aims to automatically de-occlude the human face majority or discriminative regions to improve face recognition performance. To achieve this, we decompose the generative process into two key stages and employ a separate generative adversarial network (GAN)-based network in both stages. The first stage generates an initial coarse face image without an occlusion mask. The second stage refines the result from the first stage by forcing it closer to real face images or ground truth. To increase the performance and minimize the artifacts in the generated result, a new refine loss (e.g., reconstruction loss, perceptual loss, and adversarial loss) is used to determine all differences between the generated de-occluded face image and ground truth. Furthermore, we build occluded face images and corresponding occlusion-free face images dataset. We trained our model on this new dataset and later tested it on real-world face images. The experiment results (qualitative and quantitative) and the comparative study confirm the robustness and effectiveness of the proposed work in removing challenging occlusion masks with various structures, sizes, shapes, types, and positions.

딥러닝 기반의 새로운 마스크 얼굴 데이터 세트를 사용한 최신 얼굴 인식 (Modern Face Recognition using New Masked Face Dataset Generated by Deep Learning)

  • 판반뎃;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.647-650
    • /
    • 2021
  • The most powerful and modern face recognition techniques are using deep learning methods that have provided impressive performance. The outbreak of COVID-19 pneumonia has spread worldwide, and people have begun to wear a face mask to prevent the spread of the virus, which has led existing face recognition methods to fail to identify people. Mainly, it pushes masked face recognition has become one of the most challenging problems in the face recognition domain. However, deep learning methods require numerous data samples, and it is challenging to find benchmarks of masked face datasets available to the public. In this work, we develop a new simulated masked face dataset that we can use for masked face recognition tasks. To evaluate the usability of the proposed dataset, we also retrained the dataset with ArcFace based system, which is one the most popular state-of-the-art face recognition methods.

특징되먹임을 이용한 패턴인식 : 특징마스크 검증을 통한 특징되먹임 성능분석 (Pattern Recognition using Feature Feedback : Performance Evaluation for Feature Mask)

  • 김수현;최상일;배성한;이영대;정구민
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.179-185
    • /
    • 2010
  • 본 논문에서는 특징 되먹임 알고리즘의 성능을 평가하기위해 특징되먹임 알고리즘의 성능에 가장 큰 영향을 주는 특징마스크를 검증한다. 특징 되먹임 기반 패턴 인식 방법은 PCALDA로 추출된 특징을 원 영역으로 역사상하여 인식에 중요한 부분을 추출하는 기법이다. 추출된 특징은 특징마스크의 형태로 원 영역으로 역사상 되므로, 특징마스크의 특징성능 검증에 대한 연구가 필수적이다. 본 논문에서는 Yale data 기반의 얼굴 인식에서 특징마스크를 검출하여 특징마스크에 따른 인식률 변화를 고찰하고 검출된 특징마스크의 성능을 검증한다.

Facial Recognition Algorithm Based on Edge Detection and Discrete Wavelet Transform

  • Chang, Min-Hyuk;Oh, Mi-Suk;Lim, Chun-Hwan;Ahmad, Muhammad-Bilal;Park, Jong-An
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.283-288
    • /
    • 2001
  • In this paper, we proposed a method for extracting facial characteristics of human being in an image. Given a pair of gray level sample images taken with and without human being, the face of human being is segmented from the image. Noise in the input images is removed with the help of Gaussian filters. Edge maps are found of the two input images. The binary edge differential image is obtained from the difference of the two input edge maps. A mask for face detection is made from the process of erosion followed by dilation on the resulting binary edge differential image. This mask is used to extract the human being from the two input image sequences. Features of face are extracted from the segmented image. An effective recognition system using the discrete wave let transform (DWT) is used for recognition. For extracting the facial features, such as eyebrows, eyes, nose and mouth, edge detector is applied on the segmented face image. The area of eye and the center of face are found from horizontal and vertical components of the edge map of the segmented image. other facial features are obtained from edge information of the image. The characteristic vectors are extrated from DWT of the segmented face image. These characteristic vectors are normalized between +1 and -1, and are used as input vectors for the neural network. Simulation results show recognition rate of 100% on the learned system, and about 92% on the test images.

  • PDF

현금 인출기 적용을 위한 얼굴인식 알고리즘 (Face Detection Algorithm for Automatic Teller Machine(ATM))

  • 이혁범;유지상
    • 한국통신학회논문지
    • /
    • 제25권6B호
    • /
    • pp.1041-1049
    • /
    • 2000
  • A face recognition algorithm for the user identification procedure of automatic teller machine(ATM), as an application of the still image processing techniques is proposed in this paper. In the proposed algorithm, face recognition techniques, especially, face region detection, eye and mouth detection schemes, which can distinguish abnormal faces from normal faces, are proposed. We define normal face, which is acceptable, as a face without sunglasses or a mask, and abnormal face, which is non-acceptable, as that wearing both, or either one of them. The proposed face recognition algorithm is composed of three stages: the face region detection stage, the preprocessing stage for facial feature detection and the eye and mouth detection stage. Experimental results show that the proposed algorithm can distinguish abnormal faces from normal faces accurately from restrictive sample images.

  • PDF

모바일 기기를 이용한 정합필터 기반의 얼굴 검출 (Face Detection based on Matched Filtering with Mobile Device)

  • 염석원;이동수
    • 융합신호처리학회논문지
    • /
    • 제15권3호
    • /
    • pp.76-79
    • /
    • 2014
  • 얼굴 인식은 표정과 포즈 또는 주변 조명변화 등 예기치 못한 영향으로 어려움이 크다. 또한 모바일 장치에서 실시간 처리를 위하여 모바일 환경의 한정된 제한이 필히 고려되어야 한다. 본 논문에서 모바일 환경에서 주파수 영역의 정합 필터를 이용한 얼굴 검출 방법을 제안한다. 얼굴 검출은 선형(Linear) 또는 위상(Phase-only) 정합 필터(Matched filter), 순차적인 검증 단계를 이용하여 수행된다. 먼저 얼굴 후보 윈도우 영역은 정합필터의 출력에 의하여 추출되고 그 다음에 피부색 테스트와 에지 마스크 필터링 테스트로 검출된 후보 영역 중 오경보(False alarm) 영역이 제거된다. 제안된 방법은 Android 플랫폼에서 JAVA를 이용하여 개발되었다. 실험 결과는 모바일 환경에서 얼굴 인식이 실시간으로 성공적으로 수행될 수 있음을 보인다.