최근 환자가 안심하고 진료를 받을 수 있도록 의료 환경의 변화에 따라 의료 피폭 저감화 대책이 국내, 국제적으로 추진되고 있다. 연구자는 유방촬영 시 보다 안전하게 검사를 받을 수 있도록 환자의 방사선 피폭에 대한 방어 및 안전 관리가 절실 하다고 생각되어 본 차폐체를 개발하고, 제작하게 되었다. 임상에서 사용 중인 유방촬영 장치로 SID 65 cm, 조건 28 kVp, 63 mAs, 측정기는 Victoreen 6000-529(Fluke Co.)를 이용하여 제작한 Face Block을 사용하여, 환자 30명을 대상으로 실제 갑상샘 위치에 Chamber를 놓고 CC, MLO를 촬영해 Face Block장착 전, 후 선량을 측정하였다. 그 결과 Face Block 장착 후 CC View에서 평균 65.9%의 선량이 감소되었고, MLO View에서는 평균 60.7%의 선량이 감소되었으며, 영상의 질에는 큰 변화가 없었다. 따라서 유방촬영 시 갑상샘의 피폭을 줄이고, 실용적이고, 유용한 실제 Face Block을 개발한 것에 큰 성과가 있었다고 생각되며, 유방촬영 시 환자들의 피폭에 관한 불안감을 해소시켜, 환자 만족도 증대와 함께 환자 피폭선량 경감에 크게 이바지 할 것으로 기대하며, 피폭선량을 줄일 수 있는 방안을 끊임없이 노력해야 할 것이다.
본 논문에서는 멀티미디어 환경을 위한 얼굴 인식 시스템을 구현하였다. 본 얼굴 인식 시스템에서는 얼굴 영역을 선정하고 출력하는 처리시간의 단축과 인식률 향상을 위한 설계에 중점을 두었다. 전형적인 RGB 색상체계를 변형 없이 사용함으로써 색상체계 변환에 필요한 시간을 감소시켰으며, 얼굴 특성을 이용한 알고리즘과 신경망 기법을 활용하여 인식률을 향상시켰다. 본 시스템은 입력된 영상을 모자이크화 시킨 후 모자이크 블록의 색상 분석을 통하여 얼굴 색상 후보 블록을 선정하고, 얼굴이 가지는 특성을 활용하여 잘못 검색된 얼굴 색상 후보 블록을 제거한다 잘못 검색된 얼굴 색상 후보 블록이 제거된 모자이크 블록 영역에서 신경망의 입력으로 사용될 4가지 특성 값을 산출하여 오류 역전파 학습과정을 거친 신경망에서 처리한 후 그 출력 값을 가지고 얼굴 영역의 진위 여부를 판단하게 된다. 본 논문에서 구현된 시스템은 복수의 인원이 포함된 10장의 입력영상을 사용하여 실험한 결과 0.1초미만의 처리시간 내에 90%의 얼굴 인식률을 보여주었다. 이 결과는 멀티미디어 동영상의 응용을 위한 얼굴인식 시스템으로 충분히 이용될 수 있을 것이다.
본 논문에서는 얼굴 인식률 향상을 위한 멀티 블록 방식의 딥러닝 구조를 제안한다. 제안하는 딥러닝의 인식 구조는 입력된 이미지의 멀티 블록화, 특징 수치 분석을 통한 멀티 블록 선정, 선정된 멀티 블록의 딥러닝 수행 등의 3가지 과정으로 구성된다. 첫 번째로 입력된 이미지의 멀티 블록화는 입력된 이미지를 4등분하여 멀티 블록화 시킨다. 두 번째로 특징 수치분석을 통한 멀티 블록 선정에서는 4등분된 멀티 블록들의 특징 수치를 확인하고 특징이 많이 부각되는 블록만을 선정하여 얼굴 인식에 방해가 되는 요소를 사전에 제거한 블록들을 선정한다. 세 번째로 선정된 멀티 블록으로 딥러닝 수행은 선정된 멀티 블록 부위가 학습되어진 딥러닝 모델에 인식을 수행하여 특징 수치가 높은 효율적인 블록으로 얼굴 인식의 결과를 도출한다. 제안된 딥러닝 구조의 성능을 평가하기 위하여 CAS-PEAL 얼굴 데이터베이스를 사용하여 실험 하였다. 실험 결과, 제안하는 멀티 블록 방식의 딥러닝 구조가 기존의 딥러닝 구조보다 평균 약 2.3% 향상된 얼굴 인식률을 나타내어 그 효용성이 입증됨을 확인하였다.
본 논문에서는 영상의 1차 모멘트와 고유벡터를 이용한 효율적인 얼굴인식 방법을 제안하였다. 여기서 1차 모멘트는 입력되는 얼굴영상의 중심좌표를 계산하는 것으로 이는 영상의 중심이동에 따른 전처리로 인식에 불필요한 배경을 배제시킴으로써 인식성능을 개선하기 위함이다. 고유벡터는 얼굴의 특징인 기저영상으로 주요성분분석을 이용하여 추출하였다. 이는 2차의 통계성을 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 방법을 각각 320*243 픽셀의 60개(15명*4장) 얼굴영상에 적용하여 city-block, Euclidean, 그리고 negative angle의 3가지 거리 척도를 분류척도로 이용하여 실험하였다. 실험결과, 중심이동의 제안된 방법은 전처리과정을 거치지 않는 기존방법보다 45개의 시험영상에서 평균적으로 약 1.6배 정도의 우수한 인식률과 약 3.9배 정도의 정확한 분류가 가능함을 확인하였다. 특히 city-block이 Euclidean 이나 negative angle의 거리척도보다 상대적으로 정확하게 분류함을 알 수 있다.
본 논문에서는 영상의 1차 모멘트와 기저영상을 이용한 효율적인 얼굴인식 방법을 제안하였다. 여기서 1차 모멘트는 입력되는 얼굴영상의 중심 좌표를 계산하여 중심 이동하는 전처리로 인식에 불필요한 배경을 배제시킴으로써 인식성능을 개선하기 위함이다. 또한 기저영상은 얼굴의 특징으로 주요성분분석과 고정점 알고리즘의 독립성분분석을 각각 이용하여 추출하였다. 이는 2차와 고차의 통계성을 각각 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 2가지 방법을 각각 64*64 픽셀의 48개(12명*4장) 얼굴영상에 적용하여 city-block, Euclidean, 그리고 negative angle의 3가지 거리 척도를 분류척도로 이용하여 실험하였다. 실험결과, 중심이동의 제안된 방법은 전처리과정을 거치지 않는 기존방법보다 우수한 인식성능이 있음을 확인하였다. 또한 제안된 중심이동의 독립성분분석이 중심이동의 주요성분분석보다 더욱 우수한 인식성능이 있음도 확인하였다. 특히 city-block이 Euclidean이나 negative angle의 거리척도보다 상대적으로 정확하게 유사성을 측정함을 알 수 있었다.
본 논문에서는 임의의 배경을 가진 컬러 정지 영상 내에 존재하는 얼굴을 검출하기 위한 방법을 제안한다. 제안 방법은 영상의 배경, 얼굴의 수, 크기, 각도, 피부색상, 그리고 조명에 대하여 불변적인 특정을 가지며, 컬러 클러스터링, 컬러 스캐닝, 서브 블록 프로세싱, 얼굴 영역 검출, 그리고 얼굴 검증과정으로 구성된다. 제안 방법은 사전 트레이닝 단계나 추가적인 데이터베이스를 필요로 하지 않는다. 본 논문의 제안방법은 보안 분야, 동영상과 정지영상의 색인, 그리고 기타 자동화된 컴퓨터비전 분야에 적용될 수 있을 것이다.
흑백 혹은 컬러 영상과 같은 2차원 정보를 사용한 얼굴 검출 알고리즘에 관한 연구가 수십 년 동안 이루어져 왔다. 최근에는 저가 range 센서가 개발되어, 이를 통해 3차원 정보 (깊이 정보: 카메라와 물체사이의 거리를 나타냄)를 손쉽게 이용함으로써 얼굴의 특징을 높은 신뢰도로 추출하는 것이 가능해졌다. 대부분 사람 얼굴에는 3차원적인 얼굴의 구조적인 특징이 있다. 본 논문에서는 흑백 영상과 깊이 영상을 사용하여 얼굴을 검출하는 알고리즘을 제안한다. 처음에는 흑백 영상에 adaboost를 적용하여 얼굴 후보 영역을 검출한다. 얼굴 후보 영역의 위치에 대응되는 깊이 영상에서의 얼굴 후보 영역을 추출한다. 추출된 영역의 크기를 $5{\times}5$ 영역으로 분할하여 깊이 값의 평균값을 구한다. 깊이 값들의 평균값들 간에 순위를 매김으로써 블록 순위 패턴이 생성된다. 얼굴 후보 영역의 블록 순위 패턴과 학습 데이터를 사용하여 미리 학습된 템플릿 패턴을 매칭함으로써 최종 얼굴 영역인지 아닌지를 판단할 수 있다. 제안하는 방법의 성능을 Kinect sensor로 취득한 실제 영상으로 실험하였다. 실험 결과 true positive를 잘 보존하면서 많은 false positive들을 효과적으로 제거하는 것을 보여준다.
본 논문에서는 영상의 1차 모멘트와 단층신경망에 기반을 둔 주요성분분석을 이용한 얼굴인식 기법을 제안하였다. 여기서 1차 모멘트는 입력되는 얼굴영상의 중심이동을 위한 것으로 차원을 감소시켜 얼굴인식에 불필요한 배경을 배제시키기 위함이다. 또한 단층신경망을 이용한 주요성분분석은 수치적 기법의 대안으로 Foldiak 학습알고리즘을 이용하며, 차원을 감소시켜 얼굴영상의 특징추출을 위한 정규직교기저를 얻기 위함이다. 제안된 기법을 64$\ast$64 픽셀의 48개(12명$\ast$4장) 학습자 얼굴영상을 대상으로 city-block, Euclidean, 그리고 negative angle의 각 거리 척도를 분류척도로 이용하여 실험하였다. 실험결과, 제안된 기법은 우수한 인식성능이 있음을 확인하였다. 특히 negative angle를 이용하는 것이 city-block이나 Euclidean을 이용하는 것보다 상대적으로 정확하게 유사성을 측정할 수 있었다.
Kim, Soo-Hyun;Lim, Sung-Hyun;Cha, Hyung-Tai;Hahn, Hern-Soo
한국지능시스템학회논문지
/
제13권4호
/
pp.461-468
/
2003
In a sequence of images obtained by surveillance cameras, facial regions appear very small and their colors change abruptly by lighting condition. This paper proposes a new face detection scheme, robust on complex background, small size, and lighting conditions. The proposed method is consisted of three processes. In the first step, the candidates for the face regions are selected using face color distribution and motion information. In the second stage, the non-face regions are removed using face color ratio, boundary ratio, and average of column-wise intensity variation in the candidates. The face regions containing eyes and mouth are segmented and classified, and then they are scored using their topological relations in the last step. To speed up and improve a performance the above process, a block based image segmentation technique is used. The experiments have shown that the proposed algorithm detects faced regions with more than 91% of accuracy and less than 4.3% of false alarm rate.
This paper presents a hybrid method for recognizing the faces by using zero mean and principal component analysis. Zero mean is applied to reduce the 1st order statistics to data nonlinearities. PCA is also used to derive an orthonormal basis which directly leads to dimensionality reduction, and possibly to feature extraction of face image. The proposed method has been applied to the problems for recognizing the 20 face images(10 persons * 2 scenes) of 324*243 pixels from Yale face database. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate). The negative angle has been relatively achieved more an accurate similarity than city-block or Euclidean.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.