• Title/Summary/Keyword: Fabrication method

Search Result 3,678, Processing Time 0.037 seconds

New Fabrication method of Planar Micro Gas Sesnor Array (집적도를 높인 평면형 가스감지소자 어레이 제작기술)

  • 정완영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.727-730
    • /
    • 2003
  • Thin tin oxide film with nano-size particle was prepared on silicon substrate by hydrothermal synthetic method and successive sol-gel spin coating method. The fabrication method of tin oxide film with ultrafine nano-size crystalline structure was tried to be applied to fabrication of micro gas sensor array on silicon substrate. The tin oxide film on silicon substrate was well patterned by chemical etching upto 5${\mu}{\textrm}{m}$width and showed very uniform flatness. The tin oxide film preparation method and patterning method were successfully applied to newly proposed 2-dimensional micro sensor fabrication.

  • PDF

Development of Improved Fabrication Methods for 2-axis Electrically Levitated MEMS Gyroscope (2축 정전부양형 MEMS 자이로스코프의 향상된 제작 공정 개발)

  • Seok, Seyeong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.274-279
    • /
    • 2015
  • This paper describes optimizing fabrication methods for 2-axis electrically levitated MEMS gyroscope. Electrostatically levitated gyroscope has very high potential of performance due to the fact that its proof mass is not mechanically bound to any other structures, but its complex structure and difficulty of fabrication holds back the research that only a few researches have been reported. In this work, fabrication method for glass-silicon-glass 3-floor structure for 2-axis electrically levitated MEMS gyroscope is presented, including simplified multi-level glass etch method utilizing photoresist attack, preventing metal diffusion by adding middle layer of metal electrode, overcoming Deep RIE limitation by separate fabrication of silicon structures and keeping the electrode safe from dicing debris.

On-Line Scheduling Method for Track Systems in Semiconductor Fabrication (반도체 제조 트랙장비의 온라인 스케줄링 방법)

  • Yun, Hyeon-Jung;Lee, Du-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.443-451
    • /
    • 2001
  • This paper addresses an on-line scheduling method for track systems in semiconductor fabrication. A track system is a clustered equipment performing photolithography process in semiconductor fabrication. Trends toward high automation and flexibility in the track systems accelerate the necessity of the intelligent controller that can guarantee reliability and optimize productivity of the track systems. This paper proposes an-efficient on-line scheduling method that can avoid deadlock inherent to track systems and optimize the productivity. We employ two procedures for the on-line scheduling. First, we define potential deadlock set to apply deadlock avoidance policy efficiently. After introducing the potential deadlock set, we propose a deadlock avoidance policy using an on-line Gantt chart, which can generate optimal near-optimal schedule without deadlock. The proposed on-line scheduling method is shown to be efficient in handling deadlock inherent to the track systems through simulation.

IC Worst Case Analysis Considered Random Fluctuations on Fabrication Process (제조 공정상 랜덤 특성을 고려한 IC 최악조건 해석)

  • 박상봉;박노경;전흥우;문대철;차균현
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.6
    • /
    • pp.637-646
    • /
    • 1988
  • The CMOS physical parameters are extracted using by processing models in fabrication steps, processing parameters, fabrication disturbances, control parameters. Statistical CMOS process and device simulator is proposed to evaluate the effect of inherent fluctuations in IC fabrication. Using this simulator, we perform worst case analysis in terms of statistically independent disturbances and compare this proposed method to Monte Carlo method, previous Worst Case method. And simulation results with this proposed method are more accurate than the past worst case analysis. This package is written in C language and runs on a IBM PC AT(OPUS).

  • PDF

The Micro Lens Mold Processing in Mechanical Fabrication Method (기계적인 가공방법에 의한 마이크로 렌즈 금형가공)

  • 정재엽;이동주;제태진;최두선;이응숙;홍성민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1885-1888
    • /
    • 2003
  • As high technology industries such as IT and display have developed, demand for application parts of micro lens and lens array has been extremely increasing. According to these trends, many researchers are studying on the fabrication technology for parts of the micro lens by a variety of methods such as MEMS, Lithography, LIGA and so on. In this paper, we have performed researches related to ultra precision micro lens, lens array mold and fabrication of Lenticular lens mold for three-dimensional display by using mechanical micro end-milling and fly-cutting fabrication method. Tools used in this research were a diamond tool of R 150$\mu\textrm{m}$. Cutting conditions set up feed rate, spindle revolution. depth of cut and dwell time as variables. And we analyzed surface quality variation of the processed products according to the cutting conditions, and then carried out experiments to search the optimum conditions. Through this research, we have confirmed that we can fabricate the ultra precision micro lens mold with surface roughness Ra=20nm and the holographic lens mold by using micro end-milling and fly-cutting fabrication method. Furthermore, we demonstrated problems happened in the fabrication of the micro lens and established the foundation of experimental study for formulating its improvement plan.

  • PDF

Comparison the fit of three-unit metal framework fabricated by wax milling method and digital light projection method (왁스 밀링 방법 및 디지털 광 프로젝션 방법으로 제작된 3본 금속 구조물의 적합도 비교)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.41 no.1
    • /
    • pp.9-19
    • /
    • 2019
  • Purpose: This study was conducted to comparative evaluate the marginal and internal gap of three-unit metal frameworks(Co-Cr) fabricated by wax milling method and digital light projection method of CAD/CAM systems. Methods: All the specimens were fabricated by three different fabrication methods: conventional wax up with casting(CWC), milled wax block with casting(MWC), digital light projection with casting(DLPC) (n=10 each). The marginal and internal fits of specimens were examined using a replica technique. The light-body silicone thickness was measured at 8 reference points(each abutment: 16 measurements). All measurements were conducted by a stereomicroscope. Digital photo were taken at $150{\times}$ magnification and then analyzed using a measurement software. The Mann-Whitney test was used for analyzing the results. Results: Statistically significant differences were found between the fabrication methods(p<0.001). The mean(SD) is ${\mu}m$ for fabrication methods, the mean marginal fit were recorded respectively, CWC 63(38), MWC group 50(33), DLPC 103(54) and the mean internal fit CWC 96(47), MWC group 116(41), DLPC 138(66). Conclusion : The marginal and internal fit were statistically different according to the fabrication methods(p<0.001). In all fabrication methods, the greatest misfit was found the occlusal area of all specimens.

Comparative study of flexural strength of temporary restorative resin according to surface polishing and fabrication methods (표면연마와 제작방법에 따른 임시 수복용 레진의 굽힘강도에 관한 비교 연구)

  • Lim, Jae-Hun;Lee, Jae-In
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • Purpose: The purpose of this study is to investigate the effect of surface polishing and fabrication method on the flexural strength of temporary restorative resin. Materials and Methods: Each of four fabrication methods was used to make 30 temporary restorative resin specimens and the specimens were divided into two groups depending on whether they were polished by mechanical polishing. Specimens were stored in 37℃ thermostat for 24 hours. Flexural strength was measured using a universal testing machine (UTM). The data obtained through the experiment were analyzed with Two-way ANOVA, Tukey's HSD test and Paired t-test. Results: CAD/CAM milling group showed the highest flexural strength regardless of surface polishing. In decreasing order, the flexural strength of the other fabrication method group was as follows SLA 3D printing, DLP 3D printing, and Conventional method group. Conclusion: Surface polishing did not affect flexural strength of the temporary restorative resin (P > 0.05). However, there were statistically significant differences in flexural strength depending on fabrication method (P < 0.05).

3DP Printing Method using Multi-Piezo Head (Multi-Piezo 헤드를 이용한 3차원 프린팅 기법)

  • Kim, Jung-Su;Kim, Dong-Soo;Lee, Min-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1394-1399
    • /
    • 2007
  • Recently, Study of 3D freeform fabrication method was working in the various applications. For example, in the powder base, it's laminated using a binding method or laser sintering method. However, these methods are not suitable in the office environments because it dust with powder that is bad for health. In this paper, we introduce a method of 3D freeform fabrication using a curing of photo-polymer resin and construct a system has multi printing head. A photo-polymer curing method has simply fabrication process and high strength of manufacturing part. However, this method has a problem on the multi print-head system. Because multi-printing system has a other printing method compare with a single printing system. Therefore, we experiment a single head 3D printing and proposed a 3D printing method using a multi-piezo head.

  • PDF

Cold Rolling Process for the Matrix Fabrication of the Mcfc (용융탄산염형 연료전지의 전해질 매트릭스에 관한 연구)

  • Park, Sang-Kill;Rho, Chang-Joo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.125-131
    • /
    • 1991
  • Electrolyte matrix fabrication process can be classifed as hot pressing, tape casting, callendering, electrophoretic deposition. however, these have limits in practice. Hot pressing is cumbersome method, because of careful heating and cooling. Furthermore, the perfected tile is so fragile that it is difficult to fit in a cell. Therefore this method is not adequate for mass production of the electrolyte matrix. Using electrophoretic deposition method, a very thin matrix can be made, but many attempts of the electrolyte embeding were found to be failure. Tape casting and callendering methods are employed in most of the matrix fabrication for the present. But these methods require lots of water as a solvent, so that coating of the LiAlO sub(2) with electrolyte is difficult. Recently, hot roll milling method has been developed and the perfected matrix was proved to be free from crack. The method, however, needs a roller to make a matrix and a perfected matrix is carefully striped off from the cooled roller. Therefore, this method requires a long time due to the cooling process. The author proposes a cold rolling process. On this method, heated slurry of the LiAlO sub(2) mixed with binder, is rolled with a cold roller. The heated slurry dose not adhere to the roller, since contacted hot slurry is rapidly solidified. Therefore fabrication speed is increased, without getting rid of merits of the hot rolling process.

  • PDF

Optimum Structural Design of D/H Tankers by using Pareto Optimal based Multi-objective function Method (Pareto 최적점 기반 다목적함수 기법에 의한 이중선각유조선의 최적 구조설계)

  • Na, Seung-Soo;Yum, Jae-Seon;Han, Sang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.284-289
    • /
    • 2005
  • A structural design system is developed for the optimum design of double hull tankers based on the multi-objective function method. As a multi-objective function method, Pareto optimal based random search method is adopted to find the minimum structural weight and fabrication cost. The fabrication cost model is developed by considering the welding technique, welding poses and assembly stages to manage the fabrication man-hour and process. In this study, a new structural design is investigated due to the rapidly increased material cost. Several optimum structural designs on the basis of high material cost are carried out based on the Pareto optimal set obtained by the random search method. The design results are compared with existing ship, which is designed under low material cost.