• Title/Summary/Keyword: Fabric properties

Search Result 1,180, Processing Time 0.021 seconds

Effects of Material Properties and Fabric Structure Characteristics of Graduated Compression Stockings (GCS) on the Skin Pressure Distributions

  • Liu Rong;Kwok Yi-Lin;Li Yi;Lao Terence-T;Zhang Xin
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.322-331
    • /
    • 2005
  • Graduated compression stockings (GCS) have been widely used for the prophylaxis and treatment of venous diseases. Their gradient pressure function largely related to their fabric structure and material properties. By combing fabric physical testing and wear trials, this study investigated the GCSs fabric structure and material properties at different locations along the stocking hoses, and quantitatively analyzed the effects of fabrics on skin pressure longitudinal and transverse distributions. We concluded that, Structural characteristics and material properties of stocking fabrics were not uniform along the hoses, but a gradual variation from ankle to thigh regions, which significantly influenced the corresponding skin pressure gradient distributions; Tensile (WT, EM) and shearing properties (G) generated most significant differences among ankle, knee and thigh regions along the stocking hose, which significantly influenced the skin pressure lognitudinal gradient distribution. More material indices generating significant gradual changes occurred in the fabric wale direction along stocking hose, meaning that materials properties in wale direction would exert more important impact on the skin pressure gradient performances. And, the greater tensibility and smoother surface of fabric in wale direction would contribute to put stocking on and off, and facilitate wearers' leg extension-flexion movements. The indices of WT and EM of stocking fabrics in series A have strong linear correlations with skin pressure lognitudinal distribution, which largely related to their better performances in gradual changes of material properties. Skin pressure applied by fabric with same material properties produced pronounced differences among four different directions around certain cross-sections of human leg, especially at the ankle region; and, the skin pressure magnitudes at ankle region were more easily influenced by the materials properties, which were considered to be largely related to the anatomic structure of human leg.

Physical Properties of Polyester Fabric Treated with Chitosan (키토산 가공처리를 통한 폴리에스테르 직물의 물리적 특성)

  • Park Ju-Young;Bae Hyun-Sook;Kang In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.5 s.142
    • /
    • pp.671-679
    • /
    • 2005
  • Chitosan is the affinitive finishing agent and gives susceptible effect in textile finishing. In order to examine the modification of polyester fabric treated with chitosan, we observed the characteristic of polyester fabric surface and measured its physical properties. For the purpose of confirming the adhesion of cationic material, we made a comparative study on anionic acid dye. The fabric was treated with crosslinking agent after chitosan finishing. Glutardialdehyde as crosslinking agent was used to improve the fixation rate of chitosan on the polyester fabric. And the US value was increased according to increasing of chitosan concentration. As the concentration of crosslinking agent was increased, whiteness index of the fabric chitosan treated was increased. Moisture regain of the fabric treated with $1\%$ chitosan was doubled and that treated with $2\%$ chitosan was tripled comparing with original fabric. Tensile strength of the chitosan treated fabric had been an increase of $10\%$ compared with alkali treated fabric and crease resistance decreased regardless of chitosan concentration.

Dimensional Properties of Low Temperature Plasms and Silicone Treated Wool Fabric

  • Kim, Min-Sun;Kang, Tae-Jin
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.152-156
    • /
    • 2001
  • Three different silicone polymer systems, such as aminofunctional, epoxyfunctional, and hydrophilic epoxyfunctional silicone polymers, were applied onto plasma pretreated wool fabric to improve the dimensional properties. The results showed that the plasma pretreatment modified the cuticle surface of the wool fiber and increased the reactivity of wool fabric toward silicone polymers. Felting shrinkage of plasma and silicone treated wool fabric was decreased with different level depending on the applied polymer system. Fabric tear strength and hand were adversely affected by plasma treatment, but these properties were favorably restored on polymer application. Therefore, it has been concluded that the combination of plasma and silicone treatments can achieve the improved dimensional stability, and better performance properties of wool fabric. The surface smoothness appearances of treated fabrics were measured using a new evaluation system, which showed good correspondence with the results of KES-FB4 surface tester.

  • PDF

The Analysis of Fabric Impact and Consumer′s Preference for Fabric on Clothing Purchase (의류 제품 구매시 소재의 영향과 소비자 소재 선호 구조 분석)

  • 정인희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.1
    • /
    • pp.83-94
    • /
    • 2002
  • This study was intended to identify fabric impact on decision-making process for clothing purchase, to determine evaluation factors of clothing, and to analyze consumer's preference for fabric on clothing purchase. 396 questionnaires distributed to college students were analyzed by descriptive statistics, oneway ANOVA, correlation, factor analysis and multidimensional scaling. The results are as follows; (1) Fabric impacted on the pre-purchase evaluation and the post-purchase process. (2) 4 factors - physical properties, outer-consciousness, self-satisfaction, and appropriateness- were determined as evaluation factors. Though fabric was included in the physical properties, fabric presented high correlations with other evaluative elements. (3) The most preferred fabric was being composed of natural fiber in fiber contents and having softness in sensation. As a result of multidimensional scaling, 2 dimensions of fabric sensation were developed as 'soft-hard'and 'thin-thick'.

Effect of hot press time on the structure characteristics and mechanical properties of silk non-woven fabric

  • Kim, Ye Eun;Bae, Yu Jeong;Seok, Young Seek;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.44 no.1
    • /
    • pp.12-20
    • /
    • 2022
  • In this research, the silk web was hot-pressed for various times, the effect of press time on the structure and mechanical properties of silk non-woven fabric was also investigated. The yellowing appeared in the silk non-woven fabric and became more apparent as press time was increased. The crystallinity of silk was decreased by the hot press treatment and it did not change significantly with an increase of hot press time. The porosity of silk non-woven fabric was constantly decreased until 120 s and it did not change much after that. The thickness of silk non-woven fabric was significantly decreased by a press time of 10 s and slightly decreased with a further increase of hot press time. The hot press treatment increased the maximum stress and elongation of silk non-woven fabrics. The press time had a significant impact on the mechanical properties of silk non-woven fabric, with 90 s being the optimum condition for the best work of rupture of silk non-woven fabric.

Liquid Moisture Management and Surface Properties of the Fabric in Transient Condition (작업복 소재 직물의 액상 수분 전달 특성 및 표면특성 연구)

  • 유신정
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.1
    • /
    • pp.61-70
    • /
    • 2001
  • As important factors determining human sensorial comfort, liquid moisture management and surface properties of heat resistant workwear materials were examined. To figure out liquid moisture management properties of the test materials, absorption capacity, rate of absorption, and evaporation properties were assessed. A modified GATS(Gravimetric Absorbency Testing System) was used to measure the liquid moisture accumulation associated with the wicking of liquid moisture from sweating skin. The GATS procedure measures demand wettability of materials to take up liquid in a direction perpendicular to the fabric surface and it was modified to incorporate a special test cell and cover to assess absorption behavior in the presence of evaporation. Fabric stiffness, smoothness, number and the length of surface fibers, and an estimate of the contact area between the skin and fabric surface were measured to characterize the mechanical and surface properties of the test materials. Also an estimate of the force with which a fabric clings to moist skin was made using as wet-cling index.

  • PDF

Physical properties of PU coated fabric with collagen (콜라겐을 첨가한 폴리우레탄 코팅직물의 물성)

  • 백천의;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.6
    • /
    • pp.800-808
    • /
    • 1999
  • The demand for PU coated synthetic leather is increasing as a high fashion material. But it has some faults of water vapor permeability surface tacky property and static electricity. Therefore the purpose of this study was the produce of PU coated fabric added collagen with hydrophilic property and soft touch. In the PU coated fabric water vapor permeability water vaper absorption and frictional electronic voltage were investigated surface bending and compression properties were also examined by the use of KES-FB System. The followings were the results of this study. 1. There was no Cr in the collagen so that Cr was not treated in the collagen. 2. The surface and cross sectional layer of PU coated fabric with collagen were highly developed by micro porous structure. 3. The water vapor permeability of PU coated fabric was increased as collagen concentration increased. 4. The water vapor absorption of PU coated fabric was increased as collagen concentration increased. 5. The frictional electronic voltage of PU coated fabric was decreased in accordance with the increase of collagen concentration. Especially it effectively decreased by the use of only 5% collagen concentration. 6,. The bending and compression properties of PU coated fabric were increased in accordance with the increase of collagen concentration so that it became stiff. 7. The Value of MIU, SMD was decreased in accordance with the increase of collagen concentration so that the PU coated fabric became smooth.

  • PDF

A Study on the Fatigue Phenomena of Woven Fabrics -On the Changes of Mechanical Properties and Handle of Woven Fabrics Caused by the Wearing- (직물의 피노에 관한 연구 -착용에 의한 역학적 성질과 태의 변화-)

  • Suh Young Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.1
    • /
    • pp.47-57
    • /
    • 1986
  • The purpose of this study is to investigate fatigue phenomema of woven fabric. In order to obtain the basic data which is available for predicting the fabric fatigue phenomena, the change of mechanical properties of woven fabrics caused by the wearing and the changes of mechanical properties of woven fabrics which were subjected to repeated tensile-shearing deformation using fabric testing machine has been investigated and compared. The fatigue of woven fabrics was examined with the value of basic mechanical properties of specimens measured by the KES-F fabric testing system and their hand value and wearing ability. The results were as follows. 1) The fatigue phenomena of woven fabrics by the wearing for 800 hours are different on the position of the body: On the portion of hip, the change of surface property was the greatest, bending hysterisis was greatly increased, thickness weight, stiffness, fullness shearing hysterisis were more increased than original fabric and T.H.V. was decreased. On the portion of knee, decreasing of tensile resilience and increasing of bending, shearing hysterisis were observed greater than any other part, and increasing of stiffness, crispness was more than original fabric. On the bottom area, the changes of mechanical property was comparatively small, H.V. and T.H.V. showed near the value of the original fabric. 2) By drycleaning most of mechanical properties showed the tendency to recover the value of the original fabric, but bending hysterisis and thickess were increased, tensile and com-pression resilience were decreased more than original fabric in all parts. 3) The fatigue phenomena caused by fabric fatigue testing machine were as follows. The decreasing of hystersis in the repeated deformation such as bending, shearing was appeared at the $10^2$ deformation, but with the increasing cycle, the tendency was slightly regained. Handle value was also appeared the lowest value at the $10^2$ deformation.

  • PDF

Effect of Resin Finishing on the Physical Properties of the Knitted Fabrics (수지처리가 환편 니트 소재의 물성에 미치는 영향)

  • Kwon Young-Ah;Park Jong-Sik
    • Textile Coloration and Finishing
    • /
    • v.18 no.3 s.88
    • /
    • pp.23-30
    • /
    • 2006
  • The bending properties, wrinkle resistance, and fabric retention behaviors of cotton knitted fabrics in the wale and course directions were studied for their dependence upon resin finishing, knit structure, and washing cycles. Stiffness, wrinkle recovery angles, and dimensional stability were investigated before and after resin finishing and laundering. It has been found that any change in the physical properties of the knitted fabrics with respect to knit structure and fabric directions are related to accompanying modifications to the state of the fiber properties. The decrease of fabric shrinkage rates and wrinkle recovery properties from increasing laundering cycles is related with resin incorporated on the fiber surface. This study shows that resin finishing on knitted fabrics can be performed only to improve fabric retention properties with reduced wrinkle recovery properties.

Thermal Comfort and Tactile Wearing Performance of Wool/nylon Fabrics for Tra-biz Garment (울/나일론 tra-biz 의류용 직물 소재의 열적 쾌적성과 착용특성)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.878-888
    • /
    • 2016
  • In this study, wool/nylon(50/50%) blend yarn and its fabrics for tra-biz(complex word of travel+business) garment were prepared, and its wear comfort characteristics were investigated through thermal manikin and human-body wearing experiment. In addition, tactile wearing performance from fabric mechanical properties and the dimensional stability and the pilling of the fabric specimen during wearing and dry-cleaning were measured and compared with those of wool 100% fabric specimen. Heat keepability of the wool/nylon(50/50%) blend fabric by thermal manikin experiment was superior than that of wool 100% fabric, this result was verified with human-body wearing experiment and its result coincided well with this experimental result. Tactile wearing performance of the wool/nylon(50/50%) fabric from fabric mechanical properties measured by FAST system was better than that of the wool 100% fabric. The dimensional stability of the wool/nylon(50/50%) fabric was more stable than that of the wool 100% fabric. Because relaxation shrinkage was lower and hygral expansion of wool 100% fabric was more high. However, the breathability and pilling property of the wool/nylon(50/50%) fabric were inferior than those of the wool 100% fabric. The possibility of application for tra-biz garment of wool/nylon(50/50%) blend fabric was observed because of good heat keepability, tactile wearing performance and washing fastness.