• 제목/요약/키워드: FXR

검색결과 15건 처리시간 0.018초

Two New Scalaranes from a Korean Marine Sponge Spongia sp.

  • Yang, Inho;Nam, Sang-Jip;Kang, Heonjoong
    • Natural Product Sciences
    • /
    • 제21권4호
    • /
    • pp.289-292
    • /
    • 2015
  • Intensive chemical investigation of Korean marine sponge Spongia sp. has led to the isolation of two new scalaranes. The planar structures of the new compounds 1 and 2 were determined through 1D and 2D NMR spectral data analysis, while the relative stereochemistry of the compounds was determined based on the analysis of $^1H-^1H$ coupling constants and NOESY spectroscopic data. Compounds 1 and 2 did not display any significant biological activities on farnesoid X-activated receptor (FXR) in co-transfection assay.

Chenodeoxycholic Acid에 의한 파골전구세포의 증식 조절 (The Regulatory Role of Chenodeoxycholic Acid on the Proliferation of Osteoclast Precursor Cells)

  • 노아롱새미;임미정
    • 약학회지
    • /
    • 제58권3호
    • /
    • pp.165-170
    • /
    • 2014
  • We investigated the effect of Chenodeoxycholic acid (CDCA) on the proliferation of osteoclast precursor cells. CDCA decreased the proliferation of osteoclast precursor cells through the control of cell cycle regulators such as cyclin D1, p21 and p27. When we checked the signaling pathway, CDCA decreased Erk activation in osteoclast precursor cells. Furthermore, two bile acid receptors, FXR and TGR5, were involved in the suppressive effect of CDCA. Taken together, this study suggested that bile acid plays an important role in the proliferation of osteoclast precursor cells.

A Novel Bromoindole Alkaloid from a Korean Colonial Tunicate Didemnum sp.

  • Hahn, Dongyup;Kim, Geum Jin;Choi, Hyukjae;Kang, Heonjoong
    • Natural Product Sciences
    • /
    • 제21권4호
    • /
    • pp.278-281
    • /
    • 2015
  • Chemical investigation on a colonial marine tunicate, Didemnum sp. led to the isolation of a series of indole alkaloids including a new (1) and two known metabolites (2-3). Based on the spectroscopic analysis including 1D and 2D NMR along with MS spectra, the structure of 1 (16-epi-18-acetyl herdmanine D) was elucidated as a new amino acid derivative. The absolute configuration of 1 was determined by comparison of specific rotation with the known compound. The structures of compounds 2 and 3 were also identified as bromoindole containing compounds N-(6-bromo-1H-indole-3-carbonyl)-L-arginine and (6-bromo-^1H-indol-3-yl) oxoacetamide, respectively, based on $^1H$ and $^{13}C$ NMR data, MS data and specific rotation value. Their pharmacological potentials as antibacterial agents and FXR antagonists were investigated, but no significant activity was found. However, the structural similarity of compound 1 to compound 4 suggested the anti-inflammatory potential of compound 1.

Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice

  • Kim, Juyoung;Kim, Juhae;Kwon, Young Hye
    • Nutrition Research and Practice
    • /
    • 제10권4호
    • /
    • pp.386-392
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. MATERIALS/METHODS: Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. RESULTS: Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including $LXR{\alpha}$, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. CONCLUSIONS: Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring.

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.