• Title/Summary/Keyword: FWD(Falling Weight Deflectometer)

Search Result 46, Processing Time 0.017 seconds

Performance Evaluation of Carbon-Reducing Soil Pavement using Inorganic Binder (무기계 바인더를 이용한 탄소저감형 흙포장의 성능평가)

  • Yoo, Ji Hyeung;Kawk, Gi Bong;Kim, Dae Sung
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.19-26
    • /
    • 2015
  • PURPOSES : This study intends to develop an inorganic soil pavement material using industrial by-products and to evaluate its applicability as a road pavement material. METHODS : In this study, a compressive strength experiment was conducted based on the NaOH solution molarity and water glass content to understand the strength properties of the soil pavement material according to the mixing ratio of alkali activator. In addition, the strength characteristic of the inorganic soil pavement material was analyzed based on the binder content. The performance of the soil pavement was evaluated by conducing an accelerated pavement test and a falling weight deflectometer (FWD) test. RESULTS : As a result of the soil pavement material test based on the mixture ratio of alkali activator, it was identified that the activator that mixed a 10 M NaOH solution to water glass in a 5:5 ratio is appropriate. As a result of the inorganic soil pavement materials test based on the binder content, the strength development increased sharply when the amount of added binder was over 300 kg; this level of binder content satisfied 28 days of 18 MPa of compression strength, which is the standard for existing soil pavement design. According to the measured results of the FWD test, the dynamic k-value did not show a significant difference before or after the accelerated pavement testing. Furthermore, the effective modulus decreased by approximately 50%, compared with the initial effective modulus for pedestrian pavement. CONCLUSIONS : Based on these results, inorganic soil pavement can be applied by changing the mixture proportions according to the use of the pavement, and can be utilized as road pavement from light load roads to access roads.

A Study on Evaluation of Moduli of 3 Layered Flexible Pavement Structures using Deflection Basins (처짐곡선을 이용한 3층 아스팔트 포장 구조체의 물성 추정에 관한 연구)

  • Kim, Soo Il;Kim, Moon Kyum;Yoo, Ji Hyeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.97-107
    • /
    • 1989
  • An inverse self-iterative procedure is developed to estimate layer moduli of 3 layered flexible pavement structures from FWD deflection basins. The theoretical deflection basins of pavement structures obtained by full factorial design are used for the parametric study on the characteristics of deflection basins and the regression analysis. The factorial design is performed for asphalt pavement structures with stabilized base layer and granular base layer, respectively. The initially assumed layer moduli by regression equations and relations between the rate of change of moduli and deflections are used in the procedure to ensure efficiency and accuracy of self-iterative model. The SINELA computer program is used for inverse self-iterative applications to determine theoretical responses. The computer program of this procedure is coded for personal computers and is verified through numerical model tests.

  • PDF

Mechanical Properties of Controlled Low Strength Materials with Marine Dredged Soil (해양준설토를 이용한 유동성 뒤채움재의 역학적 특성)

  • Kim, Ju-Deuk;Lee, Byung-Sik;Lee, Kwan-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.35-44
    • /
    • 2007
  • Plowable fill is generally a mixture of sand, fly ash, a small amount of cement and water. Sand is the major component of most flowable fill mixes. Marine dredged soil was adopted for flowable fill instead of fly ash. Natural sea sand and in-situ soil were used for comparison. The flow behavior, hardening characteristics, and ultimate strength behavior of flowable fill were investigated. The unconfined compression test necessary to sustain walkability as the fresh flowble fill hardens was determined and the strength at 3-days appeared to correlate well with the water-to-cement ratio. The strength parameters, like cohesion and internal friction angle, was determined along the curing time. The creep test for settlement potential was conducted. Also, potable falling weight deflectometer(PFWD) test has been carried out for elastic modulus of each controlled low strength materials(CLSM). The data presented show that marine dredged soil and in-situ soil can be successfully used in CLSM.

Development of a Procedure for Remaining Life Estimation in Airfield Concrete Pavement (공항 콘크리트 포장의 잔존수명 산출 논리 개선 연구)

  • Kwon Soo-Ahn;Suh Young-Chan;Cho Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.131-138
    • /
    • 2006
  • Methods of back calculation for either design procedures or elastic moduli obtained from FWD(Falling Weight Deflectometer) tests have widely been used to predict remaining life of airfield concrete pavements. Since the variation of the elastic modulus obtained from the FWD test depends on the back calculation methods, prediction of remaining life of airfield pavement using the back calculation method has not been reliable. In addition, the FWD method only concentrates on the structural integrity of the pavement without considering functional distress. In this study, a newly developed remaining life estimation procedure is proposed. This methodology includes both structural and functional consideration and suggests models and decision criteria for each stage. In order to improve the estimation procedure on remaining life of pavement, conducted the several tests on an old airfield concrete pavement. As a result, it is concluded that the load transfer efficiency on joint is better for predicting remaining life of pavement than the elastic modulus, which is commonly used. In order to verify applicability of the newly developed estimation procedure and detailed models, investigation and analysis were conducted according to the new methodology on C-airfield pavement. Finally, it is confirmed that the efficiency of the proposed method for practical application was good enough.

  • PDF

A Study on the Viscoelastic Model of Asphalt Concrete Pavement (아스팔트 포장의 점탄성 거동 모델에 관한 연구)

  • Jo, Byung Wan;Tae, Ghi Ho;Noh, Dong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.429-437
    • /
    • 2006
  • Existing basic mechanical models which are methods characterizing viscoelastic materials were first reviewed to account for viscoelastic behavior of the asphalt pavement structure in this paper. A viscoelastic mechanical model considering a single load of vehicles subsequently was suggested and an equation that indicates the time-dependant behavior of asphalt pavements was derived from the proposed model. Non-destructive tests using falling weight deflectometer(FWD) were performed for a test section to estimate the application of the model. Both deflections and strains procured by the equation were compared to testing results according to loading history. By observing field measurements and theoretical evaluations, if two results are compared by the features of deflection according to time history, it could be concluded that the proposed model is expected to be suitable for prediction of the behavior of asphalt pavements because there is hardly difference between field data and calculated data.

A Preliminary Study for Assessing the Risk of Road Collapse Using Accelerated Pavement Testing (도로함몰 위험도 평가를 위한 실대형 포장가속시험 기초 연구)

  • Park, Hee Mun;Kim, Yeon Tae;Choi, Ji Young;Kim, Ki Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : The objective of this study is to evaluate the effect of size and depth of cavities on the pavement failure using the full-scale accelerated pavement testing. METHODS : A full-scale testbed was constructed by installing the artificial cavities at a depth of 0.3 m and 0.7 m from the pavement surface for accelerated pavement testing. The cavities were made of ice with a dimension of 0.5 m*0.5m*0.3m, and the thickness of asphalt and base layer were 0.2 m and 0.3 m, respectively. The ground penetrating radar and endoscope testing were conducted to determine the shape and location of cavities. The falling weight deflectometer testing was also performed on the cavity and intact sections to estimate the difference of structural capacity between the two sections. A wheel loading of 80 kN was applied on the pavement section with a speed of 10 km/h in accelerated pavement testing. The permanent deformation was measured periodically at a given number of repetitions. The correlation between the depth and size of cavities and pavement failure was investigated using the accelerated pavement testing results. RESULTS : It is found from FWD testing that the center deflection of cavity section is 10% greater than that of the intact section, indicating the 25% reduction of modulus in subbase layer due to the occurrence of the cavity. The measured permanent deformation of the intact section is approximately 10 mm at 90,000 load repetitions. However, for a cavity section of 0.7 m depth, a permanent deformation of 30 mm was measured at 90,000 load repetitions, which is three times greater than that of the intact section. At cavity section of 0.3 m, the permanent deformation reached up to approximately 90 mm and an elliptical hole occurred at pavement surface after testing. CONCLUSIONS : This study is aimed at determining the pavement failure mechanism due to the occurrence of cavities under the pavement using accelerated pavement testing. In the future, the accelerated pavement testing will be conducted at a pavement section with different depths and sizes of cavities. Test results will be utilized to establish the criteria of risk in road collapse based on the various conditions.