DOI QR코드

DOI QR Code

A Study on the Viscoelastic Model of Asphalt Concrete Pavement

아스팔트 포장의 점탄성 거동 모델에 관한 연구

  • Received : 2005.05.18
  • Accepted : 2006.03.14
  • Published : 2006.05.31

Abstract

Existing basic mechanical models which are methods characterizing viscoelastic materials were first reviewed to account for viscoelastic behavior of the asphalt pavement structure in this paper. A viscoelastic mechanical model considering a single load of vehicles subsequently was suggested and an equation that indicates the time-dependant behavior of asphalt pavements was derived from the proposed model. Non-destructive tests using falling weight deflectometer(FWD) were performed for a test section to estimate the application of the model. Both deflections and strains procured by the equation were compared to testing results according to loading history. By observing field measurements and theoretical evaluations, if two results are compared by the features of deflection according to time history, it could be concluded that the proposed model is expected to be suitable for prediction of the behavior of asphalt pavements because there is hardly difference between field data and calculated data.

본 연구에서는 아스팔트 포장의 표층을 구성하고 있는 아스팔트 혼합물의 점탄성(Viscoelasticity) 거동을 규명하기 위하여 먼저 기존의 일반적인 역학적 모델을 고찰하였으며, 차량의 단일 축 하중을 고려한 점탄성 모델식을 제안하고 그 모델에 대한 기본식을 유도하였다. 또한, 제안된 모델식의 검증을 위해서 시험구간에 대하여 비파괴시험을 실시하였으며 하중 이력에 따른 변형률과 처짐값을 산출하고 이를 제안된 모델식의 계산값과 비교분석하였다. 분석 결과, 시험값과 모델식의 결과값의 오차가 거의 없음을 알 수 있었으며, 시간에 따른 처짐의 양상만을 비교해 볼 때, 본 연구에서 제안한 모델식에 의해서 실제 하중에 의한 포장의 처짐을 예측하는 것이 가능하다는 결론을 얻을 수 있었다.

Keywords

References

  1. 건설교통부(2002) 한국형 포장 설계법 개발 및 포장성능 개선방안 연구: 1단계 1차년도 최종보고서, 아스팔트 포장 설계법 개발, Kprp-G-02, 건설교통부, pp. 75-84
  2. 서울시(2001) 서울시 도로관리사업소 도로보수과 설계지침, 건설안전관리본부
  3. 한국도로공사(1995) 아스팔트 포장 설계의 표준화 연구(I), 중간보고서, 도로연 95-23-10, pp. 19-27
  4. Boutros Sebaaly, Trevor, Davis, Michael, G., and Mamlouk, S. (1985) Dynamics of falling weight deflectometer, Journal of Transport Engineering, ASCE, Vol. 111, No. 6, pp. 618-632 https://doi.org/10.1061/(ASCE)0733-947X(1985)111:6(618)
  5. Burmister, D.M. (1943) The theory of stresses and displacements in layered system and applications to the design of airport runaways. Proceedings, Highway Research Board, Vol. 23
  6. Bohn, A., Ullidtz, P., Stubstad, R., and Sorensen, A. (1972) Danish experiments with the french falling weight deflectometer, proceedings, 3rd International Conference on the Structural Design of Asphalt Pavements, Univ. of Michigan, Ann Arbor, pp. 1119-1128
  7. Cheryl Richter (1997) Advanced Methods for Using FWD Deflection-Time Data to Predict Pavement Performance, FHWA, Techbrief
  8. Erwin Kreyszig (2000) Advanced Engineering Mathematics, Eighth Edition, John Wiley & Sons, Inc.
  9. Huang Y. H. (1993) Pavement Analysis and Design, Prentice Hall
  10. Hoffman, M.S. and Thompson, M.R. (1982) Comparative study of selected nondestructive testing device, Transportation Research Record No.852, Transportation Research Board, Washington, D.C., pp. 32-41
  11. Irving H. Shames and Francis A. Cozzarelli (1997) Elastic and Inelastic Stress Analysis, Taylor & Francis, pp. 167-169
  12. Lakes, Roderic S. (1998) Viscoelastic Solids, CRC Press, pp. 23-30
  13. Lytton, R.L. (1989) Nondestructive Evaluation of Pavements by Surface Wave Method, ASTM STP, pp. 119-137