This study investigated the effect of dried food-waste diets(FW) fermented by Aspergillus oryzae(AO), on broiler growth performance, $NH_3$, emission and fecal microflora. Three hundreds broilers, two week old Hubbard strain, were randomly allotted to 4 experiments and fed with standards early boiler diet replaced with FW and AFW. In experiment 1, eighty four broilers were distributed into 7 treatments with 4 pens at 3 birds per replicate(pen). The dietary treatments ; T1 was com-soy bean meal based broiler diet(Control), T2, T3, T4 were for basal diet replaced with dried food waste without AO(FW) at the level of 20, 40 and $60\%$, respectively and T5, T6 and T7 followed the same levels for the basal diet but using Aspergillus oryzae inoculate food-waste(AFW). For experiments 2, 3, 4, seventy two broilers were distributed into 6 treatments with 4 pens at 3 birds per replicate(pen), respectively. The dietary treatments were the com-soy bean meal based broiler diet replacement with different combinations of FW and AFW, 1:0, 3:1, 1:1, 1:3, 0:1. at level of 20, 40 and $60\%$, respectively. In Exp. 1, it tended to be decreased in weight gain, however, there were no statistical differences among treatments except FW $60\%$ level of replacement(p<0.05). Feed intake and feed efficiency was not different among treatments. Total bacterial counts were not different between the control and FW diet, but E. coli decreased as the AFW levels of replacement were increased(p<0.05). There were no differences in weight gain, feed intake and feed efficiency among treatments in Exp. 2 and weight gains were lower fur FW diet compared with the control and AFW diet in Exp. 3(p<0.05). In Exp. 4, there were no differences in feed intakes among treatments, but lower in weight gain and feed efficiency in FW diet than that the control. In experiment 3, the $NH_3$ emission was the highest among treatments in FW/AFW 1:0 diet(p<0.05). From these results, it seems that FW would be supplemented up to $20\%$ in broiler diets and AO culture extract could improve FW value as feed supplements.