• Title/Summary/Keyword: FUDS

Search Result 6, Processing Time 0.022 seconds

Design Characteristics on Electric Drivetrain for Electric Vehicle Based on Driving Performance

  • Park, Ji-Seong;Jung, Sang-Yong
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.47-54
    • /
    • 2009
  • Design consideration on electric drivetrain(E-D/T), usually referred as electric motor for driving, its compatible reduction gear, and inverter, are performed for developing electric vehicle(EV) with efficient driving performance. Universal mode of driving cycle has been used to make up the actual vehicle performance, and its results are incorporated to the design of E-D/T.

  • PDF

Fuel economy and Life Cycle Cost Analysis of Fuel Cell Hybrid Vehicle (연료전지 하이브리드 자동차의 연료 경제성 및 Life cycle 비용 분석)

  • Jung, Kwi Seong;Oh, Byeong Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.287-296
    • /
    • 2002
  • 현재 자동차의 문제점을 해결할 수 있는 가장 착실한 엔진은 수소를 이용한 연료 전지라고 판단된다. 연료전지는 화학적 에너지를 전기적 에너지로 직접 변환하는 장치이다. 순수한 연료전지 차량과 연료전지 하이브리드 차량을 비교 분석하였다. 연료전지 하이브리드 차량에서 고려하여야할 점은 효율, 연료경제성, 출력 특성 등이 있다. FUDS 싸이클 시뮬레이션 비교를 하면 하이브리드화가 순수 연료전지 차량 보다 효율이 높다. 이는 회생 제동 에너지를 이용할 수 있으며 battery를 이용하여 연료전지를 효율적인 영역에서 작동하게 할 수 있기 때문이다. Life cycle 비용은 연료전지의 크기, 연료전지의 가격, 수소의 가격 등에 지배적인 영향을 받는다. 연료전지의 가격이 고가이면 하이브리드화가 유리하나, 연료전지의 가격이 400$/kW 이하가 되면 순수한 연료전지 자동차가 비용면에서 유리 하다.

CVT Ratio Control for Improvement of Fuel Economy by Considering Powertrain Response Lag

  • Lee, Heera;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1725-1731
    • /
    • 2003
  • A high level CVT ratio control algorithm is proposed to improve the engine performance by considering the powertrain response lag. In this algorithm, the desired CVT speed ratio is modified from the vehicle velocity, which is estimated after the time delay due to the powertrain response lag. In addition, the acceleration map is constructed to estimate the vehicle acceleration from the throttle pedal position and the CVT ratio. Using the CVT ratio control algorithm and the acceleration map, vehicle performance simulations are performed to evaluate the engine performance and fuel economy. It is found that the fuel economy can be improved about 3.6% for FUDS by the ratio control algorithm for the target vehicle. In selecting the appropriate time delay, compromise between the fuel economy and the acceleration performance is required.

A Study on the Structure and Characteristics of Light-duty FC Hybrid Vehicle (경부하 FC 하이브리드 자동차의 구조와 특성에 관한 연구)

  • Bong, Tae-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.911-917
    • /
    • 2007
  • Global primary energy demand is projected to increase by 1.7% per year from 2000 to 2030. Almost three-quaters of the increase in demand will come from the transportation sector. Fuel cell hybrid vehicle technology has the potential to significantly reduce energy and harmful emissions, as well as our dependence on foreign oil. In this paper, a systematic and logical methodology is developed and improved mainly to design light duty fuel cell hybrid electric vehicle. We investigated structure and characteristics of light duty FC hybrid vehicle carefully. It can easily be expanded to analyze vehicle-to-grid power connectable plug-in NeHEV. A fuel cell hybrid neighbourhood electric vehicle configuration has been studied in-depth utilizing the proposed methodology.

Estimating the State-of-Charge of Lithium-Ion Batteries Using an H-Infinity Observer with Consideration of the Hysteresis Characteristic

  • Xie, Jiale;Ma, Jiachen;Sun, Yude;Li, Zonglin
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.643-653
    • /
    • 2016
  • The conventional methods used to evaluate battery state-of-charge (SOC) cannot accommodate the chemistry nonlinearities, measurement inaccuracies and parameter perturbations involved in estimation systems. In this paper, an impedance-based equivalent circuit model has been constructed with respect to a LiFePO4 battery by approximating the electrochemical impedance spectrum (EIS) with RC circuits. The efficiencies of approximating the EIS with RC networks in different series-parallel forms are first discussed. Additionally, the typical hysteresis characteristic is modeled through an empirical approach. Subsequently, a methodology incorporating an H-infinity observer designated for open-circuit voltage (OCV) observation and a hysteresis model developed for OCV-SOC mapping is proposed. Thereafter, evaluation experiments under FUDS and UDDS test cycles are undertaken with varying temperatures and different current-sense bias. Experimental comparisons, in comparison with the EKF based method, indicate that the proposed SOC estimator is more effective and robust. Moreover, test results on a group of Li-ion batteries, from different manufacturers and of different chemistries, show that the proposed method has high generalization capability for all the three types of Li-ion batteries.

A Novel Sliding Mode Observer for State of Charge Estimation of EV Lithium Batteries

  • Chen, Qiaoyan;Jiang, Jiuchun;Liu, Sijia;Zhang, Caiping
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1131-1140
    • /
    • 2016
  • A simple design for a sliding mode observer is proposed for EV lithium battery SOC estimation in this paper. The proposed observer does not have the limiting conditions of existing observers. Compared to the design of previous sliding mode observers, the new observer does not require a solving matrix equation and it does not need many observers for all of the state components. As a result, it is simple in terms of calculations and convenient for engineering applications. The new observer is suitable for both time-variant and time-invariant models of battery SOC estimation, and the robustness of the new observer is proved by Liapunov stability theorem. Battery tests are performed with simulated FUDS cycles. The proposed observer is used for the SOC estimation on both unchanging parameter and changing parameter models. The estimation results show that the new observer is robust and that the estimation precision can be improved base on a more accurate battery model.