• Title/Summary/Keyword: FTR mode

Search Result 2, Processing Time 0.019 seconds

Development of a Test System for a Hemispherical Resonator and Control of Vibrating Pattern (반구형공진기 실험장치 개발과 진동패턴 제어)

  • Kim, Dongguk;Yoon, Hyungjoo;Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.813-819
    • /
    • 2013
  • The authors have developed a test system for a hemispherical resonator gyroscope by using NI FPGA equipment. We have verified its suitability for the research of resonator gyroscopes through several tests: deriving resonance, controlling amplitudes, and estimating resonator parameters. The authors have adjusted a vibrating pattern to be aligned with the driving axis (or electromagnets). This pattern alignment is a basic and important operation of the FTR mode, which is one of operating modes for resonant gyroscopes.

Force-To-Rebalance Mode of a Resonator Gyro and Angular Rate Measurement Tests (공진 자이로의 재평형 모드 구현과 각속도 측정 실험)

  • Jin, Jaehyun;Kim, Dongguk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.563-569
    • /
    • 2014
  • This article focuses on a hemispherical resonator gyro driven by the Coriolis effect. A hemispherical shell, called a resonator, is maintained in the resonance state by amplitude control and phase locking control. Parametric excitation has been used to control the amplitude. For rate measurement mode or FTR mode, nodal points have been kept to an amplitude of zero. Angular rate measurement has been demonstrated by rotating a resonator. Frequency mismatch between two stiffness principal axes is a major cause of low performance: vibrating pattern drift and reduced control effectiveness. This mismatch has been reduced significantly by the addition of small mass. A negative spring effect, which lowers resonance frequencies, has been verified experimentally.