• Title/Summary/Keyword: FTIR spectra

Search Result 191, Processing Time 0.022 seconds

Impact of Air Convection on H3PO4-Activated Biomass for Sequestration of Cu (II) and Cd (II) Ions

  • Girgis, Badie S.;Elkady, Ahmed A.;Attia, Amina A.;Fathy, Nady A.;Abdel Wahhab, M. A.
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.114-122
    • /
    • 2009
  • Crushed, depitted peach stones were impregnated activated with 50% $H_3PO_4$ followed by pyrolysis at $500^{\circ}C$. Two activated carbons were produced, one under its own evolved gases during pyrolysis, and the second conducted with air flow throughout the carbonization stage. Physicochemical properties were investigated by several procedures; carbon yield, ash content, elemental chemical analysis, TG/DTG and FTIR spectra. Porosity characteristics were determined by the conventional $N_2$ adsorption at 77 K, and data analyzed to get the major texture parameters of surface area and pore volume. Highly developed activated carbons were obtained, essentially microporous, with slight effect of air on the porous structure. Oxygen was observed to be markedly incorporated in the carbon matrix during the air treatment process. Cation exchange capacity towards Cu (II) and Cd (II) was tested in batch single ion experimental mode, which proved to be slow and a function of carbon dose, time and initial ion concentration. Copper was up taken more favorably than cadmium, under same conditions, and adsorption of both cations was remarkably enhanced as a consequence of the air treatment procedure. Sequestration of the metal ions was explained on basis of the combined effect of the oxygen functional groups and the phosphorous-containing compounds; both contributing to the total surface acidity character.

The Characteristic of NOx Removal Using Catalyst-Corona Discharge (촉매-코로나방전을 이용한 NOx제거 특성)

  • Goh, Hee-Suk;Park, Jae-Yoon;Kim, Jong-Suk;Lee, Soo-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.27-33
    • /
    • 2004
  • The catalytic effect of waterworks sludge on NOx removal in $BaTiO_3$pellets and sludge pellets combined packed-bed plasma reactor with plate-plate electrode geometry is measured for the various conditions. NOx removal rate is about 90[%] at $BaTiO_3$-sludge combined reactor used fresh sludge. $NO_2$ and $O_3$ as byproducts are significantly generated in only $BaTiO_3$ packed-bed plasma reactor, however, in $BaTiO_3$-sludge combined packed-bed reactor, $NO_2$ and $O_3$ are completely removed while $CO_2$ as by-products are observed from FTIR spectra. $NO_2$ and $O_3$ seem to react with metallic molecules, metal oxide, and organic compounds that are generally chlorophyll included in sludge. NOx removal rate increases with $O_2$ concentration increasing. Removal rates $NO_2$ and $O_3$ are independent of operating time and repetition measurement times.

Optical Properties of Infinite-Layer Superconductors $Sr_{0.9}$$Ln_{0.1}$Cu$O_2$ (LnLa, Gd, Sm) (무한층 초전도체 $Sr_{0.9}Ln_{0.1}CuO_2$(Ln=La, Gd, Sm)의 광학적 성질)

  • Mun, Mi-Ock;Park, Young-Sub;Kim, Kibum;Kim, Jae H.;A. B. Kuzmenko
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.13-16
    • /
    • 2001
  • We have measured the reflectivity of superconducting infinite-layer compounds $Sr_{0.9}$ $Ln_{0.1}$ Cu $O_2$ (Ln=La, Gd, Sm) with $T_{c}$ : 39 K using a Fourier-transform infrared spectrometer. We have identified the optical phonon modes from their infrared reflectivity and conductivity spectra and have proposed possible displacement patterns. The La- and the Gd-doped compounds exhibited only four ($2A_{2u}$ $+2E_{u}$) out of the five ($2A_{2u}$ $3E_{u}$) infrared-active phonons predicted by a group theoretical analysis whereas the Sm-doped compound exhibited all five modes. For the La-doped sample, we investigated the temperature dependence of the optical response functions in a wide temperature range of 7 - 300 K. In FIR region, the reflectivity is apparently enhanced below ~120 $cm^{-1}$ as temperature decreases across $T_{c}$. The value of $2$\Delta$/k_{B}$ $T_{c}$ is about 4.5, which is consistent with maximum gap value of d-wave $high- T_{c}$ cuprates.> c/ cuprates.uprates.s.

  • PDF

Nanotribological Characterization of Annealed Fluorocarbon Thin Film in N2 and Vacuum (질소와 진공 분위기에서 에이징 영향에 따른 불화유기박막의 나노트라이볼러지 특성 평가)

  • 김태곤;김남균;박진구;신형재
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.193-197
    • /
    • 2002
  • The tribological properties and van der Waals attractive forces and the thermal stability of films are very important characteristics of highly hydrophobic fluorocarbon (FC) films for the long-term reliability of nano system. The effect of thermal annealing on films and van der Waals attractive forces and friction coefficient of films have been investigate d in this study. It was coated Al wafer which was treated O2 and Ar that ocatfluorocyclobutane ($C_4_{8}$) and Ar were supplied to the CVD chamber in the ratio of 2:3 for deposition of FC Films. Static contact angle and dynamic contact angle were used to characterize FC films. Thickness of films was measured by variable angle spectroscopy ellipsometer (VASE). Nanotribological data was got by atomic force microscopy (AFM) to measure roughness, lateral force microscopy (LFM) to measure friction force, and force vs. distance (FD) curve to evaluate adhesion force. FC films were cured in N2 and vacuum. The film showed the slight changes in its properties after 3 hr annealing. FTIR ATR studies showed the decrease of C-F peak intensity in the spectra as the annealing time increased. A significant decrease of film thickness has been observed. The friction force of Al surface was at least thirty times higher than ones with FC films. The adhesive force of bare Al was greater than 100 nN. After deposit FC films adhesive force was decreased to 40 nN. The adhesive force of films was decreased down to 10 nN after 24 hr annealing. During 24 hr annealing in $N_2$and vacuum at $100^{\circ}C$ film properties were not changed so much.

  • PDF

Infrared Spectroscopy and Differential Scanning Calorimetry of Silk Fibroin/Hyaluronic Acid Blend Film (견피브로인/히아론산 브렌드 필름의 적외선 분광 분석 및 시차열분석)

  • Kweon HaeYong;Lee Kwang-Gill;Yeo Joo-Hong;Woo SoonOk;Han SangMi;Lee Yong Woo;Lee Jang Hern;Park Young Hwan
    • Journal of Sericultural and Entomological Science
    • /
    • v.46 no.1
    • /
    • pp.28-31
    • /
    • 2004
  • Bombyx mori silk fibroin/hyaluronic acid blend films were prepared by mixing aqueous solution of B. mori silk fibroin and hyaluronic acid. According to the FTIR spectra, no interaction between silk fibroin and hyaluronic acid was found. The conformation of silk fibroin in blend films was changed from random coil to $\beta$-sheet structure by treatment of EDC ethanol solution. Thermal degradation peak of silk fibroin and hyaluronic acid was also not altered by blending each other. The average swelling ratio of silk fibroin/hyaluronic acid blend films was 70. Therefore, silk fibroin/hyaluronic acid blend films might be one of possible wound dressing materials.

Adsorption of methyl orange from aqueous solution on anion exchange membranes: Adsorption kinetics and equilibrium

  • Khan, Muhammad Imran;Wu, Liang;Mondal, Abhishek N.;Yao, Zilu;Ge, Liang;Xu, Tongwen
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.23-38
    • /
    • 2016
  • Batch adsorption of methyl orange (MO) from aqueous solution using three kinds of anion exchange membranes BI, BIII and DF-120B having different ion exchange capacities (IECs) and water uptakes ($W_R$) was investigated at room temperature. The FTIR spectra of anion exchange membranes was analysed before and after the adsorption of MO dye to investigate the intractions between dye molecules and anion exchange membranes. The effect of various parameters such as contact time, initial dye concentration and molarity of NaCl on the adsorption capacity was studied. The adsorption capacity found to be increased with contact time and initial dye concentration but decreased with ionic strength. The adsorption of MO on BI, BIII and DF-120B followed pseudo-first-order kinetics and the nonlinear forms of Freundlich and Langmuir were used to predict the isotherm parameters. This study demonstrates that anion exchange membranes could be used as useful adsorbents for removal of MO dye from wastewater.

Apoptosis and inhibition of human epithelial cancer cells by ZnO nanoparticles synthesized using plant extract

  • Koutu, Vaibhav;Rajawat, Shweta;Shastri, Lokesh;Malik, M.M.
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.233-240
    • /
    • 2019
  • The present research work reports in-vitro anti-cancer activity of biologically synthesized ZnO nanoparticles (ZnO NPs) against human carcinoma cells viz SCC-40, SK-MEL-2 and SCC-29B using Sulforhodamine-B (SRB) Assay. ZnO NPs were synthesized by a unique and novel biological route using Temperature-gradient phenomenon where the extract of combination of Catharanthus roseus (L.) G. Don (C. roseus), Azadirachta indica (A. indica), Ficus religiosa (F. religiosa) and NaOH solution were used as synthesis medium. The morphology of the ZnO NPs was characterized by Transmission Electron Microscopy (TEM). TEM images reveal that particle size of the samples reduces from 76 nm to 53 nm with the increase in reaction temperature and 68 nm to 38 nm with the increase in molar concentration of NaOH respectively. XRD study confirms the presence of elements and reduction in crystallite size with increase in reaction temperature and NaOH concentration. The diffraction peaks show broadening and a slight shift towards lower Bragg angle ($2{\theta}$) which represents the reduction in crystallite size as well as presence of uniform strain. The FTIR spectra of the extract show transmittance peak fingerprint of Zn-O bond and presence of bioactive molecules These NPs exhibit inhibition greater than 50% for SCC-40, SK-MEL-2 and SCC-29B cell lines and more than 50% cell kill for SCC-29B cells at concentrations < $80{\mu}g/ml$. Nanoparticles with smallest size have shown better anti-cancer activity and peculiar cell-selectivity. The combination of extracts of these plants with ZnO NPs can be used in targeted drug delivery as an effective anti-cancer agent, a potential application in cancer treatment.

Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material

  • Ince, Olcay K.;Aydogdu, Burcu;Alp, Hevidar;Ince, Muharrem
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.77-90
    • /
    • 2021
  • In the present study, novel chitosan coated magnetic magnetite (Fe3O4) nanoparticles were successfully biosynthesized from mushroom, Agaricus campestris, extract. The obtained bio-nanocomposite material was used to investigate ultra-fast and highly efficient for removal of Ni2+ ions in a fixed-bed column. Chitosan was treated as polyelectrolyte complex with Fe3O4 nanoparticles and a Fungal Bio-Nanocomposite Material (FBNM) was derived. The FBNM was characterized by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Fourier Transform Infrared spectra (FTIR) and Thermogravimetric Analysis (TGA) techniques and under varied experimental conditions. The influence of some important operating conditions including pH, flow rate and initial Ni2+ concentration on the uptake of Ni2+ solution was also optimized using a synthetic water sample. A Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was carried out to maximize Ni2+ removal using FBNM for adsorption process. A regression model was derived using CCD to predict the responses and analysis of variance (ANOVA) and lack of fit test was used to check model adequacy. It was observed that the quadratic model, which was controlled and proposed, was originated from experimental design data. The FBNM maximum adsorption capacity was determined as 59.8 mg g-1. Finally, developed method was applied to soft drinks to determine Ni2+ levels. Reusability of FBNM was tested, and the adsorption and desorption capacities were not affected after eight cycles. The paper suggests that the FBNM is a promising recyclable nanoadsorbent for the removal of Ni2+ from various soft drinks.

Preparation of High-Solid Microfibrillated Cellulose from Gelidium amansii and Characterization of Its Physiochemical and Biological Properties

  • Min Jeong Kim;Nur Istianah;Bo Ram So;Hye Jee Kang;Min Jeong Woo;Su Jin Park;Hyun Jeong Kim;Young Hoon Jung;Sung Keun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1589-1598
    • /
    • 2022
  • Microfibrillated cellulose (MFC) is a valuable material with wide industrial applications, particularly for the food and cosmetics industries, owing to its excellent physiochemical properties. Here, we prepared high-solid microfibrillated cellulose (HMFC) from the centrifugation of Gelidium amansiiderived MFC right after fibrillation. Dispersion properties, morphology, and structural changes were monitored during processing. HMFC has a five-fold higher solid concentration than MFC without significant changes to dispersion properties. SEM images and FTIR spectra of HMFC revealed a stable surface and structure against centrifugal forces. HMFC exhibited 2,2'-azino-bis (3-ethylbenzothiazoline6-sulfonic acid) (ABTS) radical scavenging activity, although it could not scavenge 2,2-diphenyl-1- picrylhydrazyl (DPPH). Moreover, HMFC inhibited the generation of LPS-induced excessive nitrite and radial oxygen species in murine macrophage RAW264.7 cells. Additionally, HMFC suppressed LPS-induced Keap-1 expression in the cytosol but did not alter iNOS expression. HMFC also attenuated the UVB-induced phosphorylation of p38, c-Jun N-terminal kinase (JNK) 1/2, and extracellular-signal-regulated kinase (ERK) 1/2, as well as the phosphorylation of c-Jun in the immortalized human skin keratinocyte HaCaT cells. Therefore, the application of centrifugation is suitable for producing high-solid MFC as a candidate material for anti-inflammatory and antioxidative marine cosmeceuticals.

Synthesis and application of zirconium phosphate mesoporous coordination polymer for effective removal of Co(II) from aqueous solutions

  • Yang Zeng;Guoyuan Yuan;Tu Lan;Feize Li;Jijun Yang;Jiali Liao;Yuanyou Yang;Ning Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4013-4021
    • /
    • 2022
  • A kind of zirconium phosphate mesoporous coordination polymer Zr-EDTMPA was successfully synthesized and characterized using XRD, FTIR, TGA, EA, SEM-EDS, and N2 sorption-desorption measurements. The prepared Zr-EDTMPA was first employed for the removal of Co(II) from an aqueous solution, and the effects of pH, contact time, temperature, initial Co(II) concentration, reusability, and sorption mechanism were systematically investigated. The results showed that the Zr-EDTMPA is a zirconium phosphate complex formed by the coordination of EDTMPA to Zr in a molar ratio of 1:1. The sorption of Co(II) by Zr-EDTMPA was a pH-dependent, spontaneous and endothermic process, which was better fitted to the pseudo-second-order kinetic model and Langmuir isotherm model. The Zr-EDTMPA was demonstrated to have excellent reusability and presented a high sorption capacity of 73.0 mg·g-1 for Co(II) at pH 8.0. The sorption mechanism was mainly attributed to the strong coordination between cobalt and the untapped hydroxyl functional groups on Zr-EDTMPA, which was confirmed by XPS spectra. Therefore, as a candidate sorbent with high sorption capacity and excellent reusability, Zr-EDTMPA has a great potential for the removal of Co(II) from aqueous solutions.