• Title/Summary/Keyword: FT-ICR

Search Result 36, Processing Time 0.026 seconds

Fourier Transform Ion Cyclotron Resonance (FT-ICR) MASS Spectrophotometric Analysis of Flower Petal from Paeonia lactiflora cv. ‘Red Charm’ and Evaluation of its Functional Activity (작약 레드참 꽃잎의 이온화원-푸리에 변환 질량분석과 기능성 연구)

  • Kim, June Hyun;Choi, Yong Bock;Lee, Ha Jung;Kim, Yong Hee;Kim, Jun Huan;Sim, Jung Min;Sohn, Young-Sun
    • Korean Journal of Plant Resources
    • /
    • v.29 no.5
    • /
    • pp.588-597
    • /
    • 2016
  • Little attention has been paid to the functional aspect of the flower petal of Paeonia lactiflora, compared to that of its root. To determine the components of flower petal of Paeonia lactiflora, we conducted the Fourier transform ion cyclotron resonance (FT-ICR) MASS spectrophotometric analysis. We detected the 24 different types of ingredients from the 70% ethanol extracts of flower petal of peonia lactiflora cv. ‘Red Charm’. The main compounds were quercetin glucopyranosides, methyl gallate, paonioflolol and kaemperol glucopyranosides. We further tested its functional activity. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the extracts was 87.9-90.4% at 0.1mg/ml. This result showed that these flower extracts have approximately 5-fold stronger antioxidant potential than a previous report with root extracts (Bang et al. 1999). The result of tyrosinase inhibition assay of Paeonia lactflora extract was almost similar to that of arbutin except significantly higher effect in the coral sunset extract at 0.1% concentration. Hyaluronidase inhibition assay showed 76.5% inhibition at 5% concentration of this flower extract, indicating that Peaonia lactiflora flower extracts have the major anti-inflammatory, anti-oxidant and brightening effects. Taken together, these results suggest these three Paeonia lactiflora species extracts might provide the basis to develop a new natural brightening agent.

High-Throughput Active Compound Discovery using Correlations between Activity and Mass Profiles

  • Park, Kyu-Hwan;Yoon, Kyo-Joong;Kwon, Kyung-Hoon;Kim, Hyun-Sik
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.13-16
    • /
    • 2010
  • The active components in a plant extract can be represented as mass profiles. We introduce here a new, multi-compound discovery method known as Scaling of Correlations between Activity and Mass Profiles (SCAMP). In this method, a correlation coefficient is used to quantify similarities between the extract activity and mass profiles. The method was evaluated by first measuring the anti-oxidation activity of eleven fractions of an Astragali Radix extract using DPPH assays. Next, 15 T Fouriertransform ion cyclotron resonance (FT-ICR) MS was employed to generate mass profiles of the eleven fractions. A comparison of correlation coefficients indicated two compounds at m/z 285.076 and 286.076 that were strong antioxidants. Principal component analyses of these profiles yielded the same result. FT-ICR MS, which offers a mass resolving power of 500,000, was used to discern isotopic fine structures and indicated that the molecular formula corresponding to the peak at m/z 285.076 was $C_{16}H_{13}O_5$. SCAMP in combination with high-resolution MS can be applied to any type of mixture to study pharmacological activity and is a powerful tool for active compound discovery in plant extract studies.

Ditopic Binding of Alkali Halide Ions to Trimethylboroxine

  • Jeong, Kyung-Hwan;Shin, Seung-Koo
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.9-12
    • /
    • 2010
  • Trimethylboroxine (TMB) is a six-membered ring compound containing Lewis acidic boron and Lewis basic oxygen atoms that can bind halide anion and alkali metal cation, respectively. We employed Fourier transform ion cyclotron resonance spectroscopy to study the gas-phase binding of $LiBrLi^+$ and $F^-(KF)_2$ to TMB. TMB forms association complexes with both $LiBrLi^+$ and $F^-(KF)_2$ at room temperature, providing direct evidence for the ditopic binding. Interestingly, the $TMB{\cdot}F^-(KF)_2$ anion complex is formed 33 times faster than the $TMB{\cdot}Li^+BrLi$ cation complex. To gain insight into the ditopic binding of an ion pair, we examined the structures and energetics of $TMB{\cdot}Li^+$, $TMB{\cdot}F^-$, $TMB{\cdot}LiF$ (the contact ion pair), and $Li^+{\cdot}TMB{\cdot}F^-$ (the separated ion pair) using Hartree-Fock and density functional theory. Theory suggests that $F^-$ binds more strongly to TMB than $Li^+$ and the contact ion-pair binding ($TMB{\cdot}LiF$) is more stable than the separated ion-pair binding ($Li^+{\cdot}TMB{\cdot}F^-$).

Characterization of Basic Nitrogen-Containing Compounds in the Products of Lube Base Oil Processing by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

  • Li, Xiaohui;Zhu, Jianhua;Wu, Bencheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.165-172
    • /
    • 2014
  • The distribution of basic nitrogen-containing compounds in three vacuum gas oils (VGOs) with different boiling ranges and their dewaxed oils from the lube base oil refining unit of a refinery were characterized by positive-ion electrospray ionization (ESI) Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). It turned out that the composition of basic nitrogen compounds in the samples varied significantly in DBE and carbon number, and the dominant basic N-containing compounds in these oil samples were N1 class species. $N_1O_1$, $N_1O_2$, and $N_2$ class species with much lower relative abundance were also identified. The composition of basic nitrogen compounds in VGOs and dewaxed VGOs were correlated with increased boiling point and varied in DBE and carbon numbers. The comparison of the analytical results between VGOs and dewaxed VGOs indicated that more basic N-containing compounds in VGO with low carbon number and small molecular weight tend to be removed by solvent refining in lube base oil processing.

Examination of the Fragmentation Behavior of Hemin and Bilin Tetrapyrroles by Electrospray Ionization and Collision-induced Dissociation

  • Sekera, Emily R.;Wood, Troy D.
    • Mass Spectrometry Letters
    • /
    • v.9 no.4
    • /
    • pp.91-94
    • /
    • 2018
  • Bilin tetrapyrroles are metabolic products of the breakdown of porphyrins within a species. In the case of mammals, these bilins are formed by the catabolism of heme and can be utilized as either biomarkers in disease or as an indicator of human waste contamination. Although a small subset of bilin tandem mass spectrometry reports exist, limited data is available in online databases for their fragmentation. The use of fragmentation data is important for metabolomics analyses to determine the identity of compounds detected within a sample. Therefore, in this study, the fragmentation of bilins generated by positive ion mode electrospray ionization is examined by collision-induced dissociation (CID) as a function of collision energy on an FT-ICR MS. The use of the FT-ICR MS allows for high mass accuracy measurements, and thus the formulas of resultant product ions can be ascertained. Based on our observations, fragmentation behavior for hemin, biliverdin and its dimethyl ester, phycocyanobilin, bilirubin, bilirubin conjugate, mesobilirubin, urobilin, and stercobilin are discussed in the context of the molecular structure and collision energy. This report provides insight into the identification of structures within this class of molecules for untargeted analyses.

Reaction of $FeC_5H_5^+$ Ion with Neutral Ferrocene: The Dependence of Reaction Pathways on Its Internal Energy

  • 김병주;소훈영
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1181-1185
    • /
    • 1999
  • The reaction of FeC5H5+ ion with ferrocene molecule is investigated using FT-ICR mass spectrometry. FeC5H5+ ions are generated by dissociative ionization of ferrocenes using an electron beam. The reaction gives rise to the formation of the adduct ion, Fe2(C5H5)3+, in competition with charge transfer reaction leading to the formation of ferrocene molecular ion, Fe(C5H5)2+·. The branching ratio of the adduct ion increases as the internal energy of the reactant ion decreases and correspondingly the branching ratio for the charge transfer reaction product decreases. The observed rate of the addition reaction channel is slower than that of the charge transfer reaction. The observation of the stable adduct ions in the low-pressure ICR cell is attributed to the radiative cooling of the activated ion-molecule complex. The mechanism of the reaction is presented to account for the observed experimental results.

Optimized Automatic Noise Level Calculations for Broadband FT-ICR Mass Spectra of Petroleum Give More Reliable and Faster Peak Picking Results

  • Hur, Manhoi;Oh, Han-Bin;Kim, Sung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2665-2668
    • /
    • 2009
  • A new algorithm for determining noise level is proposed for more reliability in interpreting spectral data for complex Fourier transform ion cyclotron resonance (FTICR) mass spectra of petroleum. In the new algorithm, a moving window with a fixed number of data points was adopted, instead of a fixed m/z width. In the analysis of petroleum, it was found that a moving window of 50,000 or more data points was optimal. This optimized automated peak picking performed well even with frequency-dependant noise in the mass spectrum. Additionally, this fast, automated peak picking algorithm was suitable for the analysis of a large set of samples.

LC-MS/MS Analysis of Surface Layer Proteins as a Useful Method for the Identification of Lactobacilli from the Lactobacillus acidophilus Group

  • Podlesny, Marcin;Jarocki, Piotr;Komon, Elwira;Glibowska, Agnieszka;Targonski, Zdzislaw
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.421-429
    • /
    • 2011
  • For precise identification of a Lactobacillus K1 isolate, LC-MS/MS analysis of the putative surface layer protein was performed. The results obtained from LTQ-FT-ICR mass spectrometry confirmed that the analyzed protein spot is the surface layer protein originating from Lb. helveticus species. Moreover, the identified protein has the highest similarity with the surface layer protein from Lb. helveticus R0052. To evaluate the proteomic study, multilocus sequence analysis of selected housekeeping gene sequences was performed. Combination of 16S rRNA sequencing with partial sequences for the genes encoding the RNA polymerase alpha subunit (rpoA), phenylalanyl-tRNA synthase alpha subunit (pheS), translational elongation factor Tu (tuf), and Hsp60 chaperonins (groEL) also allowed to classify the analyzed isolate as Lb. helveticus. Further classification at the strain level was achieved by sequencing of the slp gene. This gene showed 99.8% identity with the corresponding slp gene of Lb. helveticus R0052, which is in good agreement with data obtained by nano-HPLC coupled to an LTQ-FT-ICR mass spectrometer. Finally, LC-MS/MS analysis of surface layer proteins extracted from three other Lactobacillus strains proved that the proposed method is the appropriate molecular tool for the identification of S-layer-possessing lactobacilli at the species and even strain levels.

Recent advances in the characterization and the treatment methods of effluent organic matter

  • Ray, Schindra Kumar;Truong, Hai Bang;Arshad, Zeshan;Shin, Hyun Sang;Hur, Jin
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.257-274
    • /
    • 2020
  • There are many previous review articles are available to summarize either the characterization methods of effluent organic matter (EfOM) or the individual control treatment options. However, there has been no attempt made to compare in parallel the physicochemical treatment options that target the removal of EfOM from biological treatments. This review deals with the recent progress on the characterization of EfOM and the novel technologies developed for EfOM treatment. Based on the publications after 2010, the advantages and the limitations of several popularly used analytical tools are discussed for EfOM characterization, which include UV-visible and fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). It is a recent trend to combine an SEC system with various types of detectors, because it can successfully track the chemical/functional composition of EfOM, which varies across a continuum of different molecular sizes. FT-ICR-MS is the most powerful tool to detect EfOM at molecular levels. However, it is noted that this method has rarely been utilized to understand the changes of EfOM in pre-treatment or post-treatment systems. Although membrane filtration is still the preferred method to treat EfOM before its discharge due to its high separation selectivity, the minimum requirements for additional chemicals, the ease of scaling up, and the continuous operation, recent advances in ion exchange and advanced oxidation processes are greatly noteworthy. Recent progress in the non-membrane technologies, which are based on novel materials, are expected to enhance the removal efficiency of EfOM and even make it feasible to selectively remove undesirable fractions/compounds from bulk EfOM.