• Title/Summary/Keyword: FSRU

Search Result 18, Processing Time 0.027 seconds

Research of Design Improvement regarding Foundation Technologies for Floating LNG (Floating LNG 기반기술에 관한 설계개선 연구 (철회된 논문입니다.))

  • Lee, Dong-Hyun;Ha, Mun-Keun;Kim, Soo-Young;Shin, Sung-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.220-230
    • /
    • 2014
  • Typical technical issues associated with Floating LNG (FLNG: FSRU and LNG FPSO) design are categorized in terms of global performance evaluation. Although many proven technologies developed through LNG carrier and oil FPSO projects are available for FLNG design, we are still faced with several technical challenges to clear for successful FLNG projects. In this paper, some of the challenges encountered during development of the floating LNG facility (i.e. LNG FPSO and FSRU) will be reviewed together with their investigated solution. At the same time, research of design improvement including new LNG-related technologies such as combined containment system will be presented to overcome the unrevealed challenges for the FLNG development.

Experimental Study of Motion Behavior of Side-by-Side Moored Two Floating Bodies Including Sloshing in Head Sea (선수파 중 슬로싱을 고려한 병렬배치된 두 부유체의 거동 특성에 관한 실험 연구)

  • Cho, Seok-Kyu;Sung, Hong-Gun;Hong, Jang-Pyo;Hong, Sa-Young;Hong, Seok-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.46-52
    • /
    • 2012
  • The motions and drift forces of side-by-side moored FSRU and LNGC including the sloshing effect, were studied using experiments. The FSRU and LNGC contained LNG cargo tanks and the LNG sloshing could affect the motions and drift forces of the structures due to its coupling with floating body motion. The effect of coupling can vary with the LNG filling level, and the effect of the filling level was investigated. The coupling effect was stronger at lower filling level. It was confirmed that longitudinal sloshing influenced the surge and surge mean drift force in head sea. In addition, gap flow affected the sway and mean drift forces. Sloshing attenuated the sway and yaw excited by gap flow in side-by-side configuration.

Research on systematization and advancement of shipbuilding production management for flexible and agile response for high value offshore platform

  • Song, Young-Joo;Woo, Jong-Hun;Shin, Jong-Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-192
    • /
    • 2011
  • Recently, the speed of change related with enterprise management is getting faster than ever owing to the competition among companies, technique diffusion, shortening of product lifecycle, excessive supply of market. For the example, the compliance condition (such as delivery date, product quality, etc.) from the ship owner is getting complicated and the needs for the new product such as FPSO, FSRU are coming to fore. This paradigm shift emphasize the rapid response rather than the competitive price, flexibility and agility rather than effective and optimal perspective for the domestic shipbuilding company. So, domestic shipbuilding companies have to secure agile and flexible ship production environment that could respond change of market and requirements of customers in order to continue a competitive edge in the world market. In this paper, I'm going to define a standard shipbuilding production management system by investigating the environment of domestic major shipbuilding companies. Also, I'm going to propose a unified ship production management and system for the operation of unified management through detail analysis of the activities and the data flow of ship production management. And, the system functions for the strategic approach of ship production management are investigated through the business administration tools such as performance pyramid, VDT and BSC. Lastly, the research of applying strategic KPI to the digital shipyard as virtual execution platform is conducted.

Experiemtnal Tests of Cryogenic Liuid Spill on a Plate (극저온 유체 유출현상에 관한 연구)

  • Ryu, Yong Hee;Hwang, Yun Ji;Lee, Yun Han;Kim, Kwang Seok;Lee, Jae Hun;Sim, Hee Jun
    • Plant Journal
    • /
    • v.16 no.3
    • /
    • pp.42-46
    • /
    • 2020
  • In the large LNG process in FLNG or FSRU, sudden temperature drops of the steel in the event of LNG leaks may cause brittle fracture of the structure. In this paper, we investigate the principle and process of forming a cryogenic fluid on a steel plate through a cryogenic spillage experiment, and analyze the correlation of the temperature distribution of the steel plate according to the distance from the nozzle and exposure time. Two types of cryogenic fluids were used: LN2 and LNG. The cyogenic liquid was released on the steel plate at 1.6L/min for LN2 and 1.5L/min for LNG. For the steel, DH was used and the temperature was measured at 10 points in total. The Leidenfrost effect was observed on the steel plate, and the temperature distribution of the steel was varied according the flow path and the heat of evaporation of the fluid.

A Study on the Development and Strength Evaluation of the Mooring Fittings with Big Capacity (선박용 대형 계류장비의 개발과 강도 평가)

  • Kim, Young-sig;Kim, Ul-nyeon;Kim, Mi-hee;Kim, Kyoung-youn
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.1-7
    • /
    • 2017
  • It has been developed large mooring fittings having the capacity of 160 tons and 180 tons installed on 170K LNG FSRU. The finite element analysis for the mooring fittings was carried out in order to check the structural integrity and to confirm satisfaction of the rule requirements. The 3 kinds of mooring fittings such as chock, bollard and universal fairlead are selected for FE analysis and load test. According to the FE analysis results, all the stress levels satisfied the acceptance criteria guided by the IACS UR A2, ISO standard, ship rules and OCIMF. As test results under design load, no structural defects were found.

  • PDF

A Fundamental Study for the Numerical Simulation Method of Green Water Occurrence on Bow Deck (선수부 갑판침입수의 수치시뮬레이션에 대한 기초연구)

  • Jeong, Kwang-Leol;Lee, Young-Gill;Kim, Nam-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.188-195
    • /
    • 2010
  • Green water load is an important parameter to be considered in designing a modern ship or offshore structures like FPSO and FSRU. In this research, a numerical simulation method for green water phenomenon is introduced. The Navier-Stokes equations and the continuity equation are used as governing equations. The equations are calculated using Finite Difference Method(FDM) in rectangular staggered grid system. To increase the numerical accuracy near the body, the Cartesian cut cell method is employed. The nonlinear free-surface during green water incident is defined by Marker-density method. The green waters on a box in regular waves are simulated. The simulation results are compared with other experimental and computational results for verification. To check the applicability to moving ship, the green water of the ship which is towed by uniform force in regular wave, is simulated. The ship is set free to heave and to surge.

Research of Combined Containment System for Floating LNG (플로팅 엘엔지 복합 화물창 시스템 연구)

  • Kim, Soo-Young;Kim, Sung-Chul;Lee, Dong-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.342-347
    • /
    • 2015
  • Floating LNG is a new concept which is used as LNG regasification/receiving facility and for LNG production/export facility. LNG Floating Production Storage and Offloading(FPSO) concept will put vitality into marginal gas fields which were delayed because of excessive investment cost in the world. LNG Floating Storage Regasification Unit(FSRU) also provides commercially competitive and effective solutions to the areas where onshore infrastructure is not well established. LNG cargo containment system is one of the key functions for FLNG to store produced LNG on a floating structure. This paper presents a new technology related to a LNG containment system; a combined cargo containment system utilizing the advantages of iIndependent tank type and membrane system. Technical advantages have been validated through research work.