• Title/Summary/Keyword: FSK Transmitter

Search Result 24, Processing Time 0.018 seconds

Design and Performance Analysis of Multicarrier 16QAM System in Simulcast Fading Channel (동시전송 감쇠 채널에서 다중반송파 16QAM 시스템의 설계 및 성능분석)

  • Kim, Gyeong-Deok;Lee, Chang-Jae;Hwang, Seong-Hyeon;Choe, Hyeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.10
    • /
    • pp.26-36
    • /
    • 2000
  • In this paper, we design the nonoverlapping multicarrier modulation (MCM) system for high rate paging system and evaluate the Performance by computer simulation. In conventional paging system, FSK was usually used, but we select QAM for high bandwidth efficiency. Transmitter structure adopts that of 4-16QAM of the iDEN$\^$TM/ and receiver consists of symbol timing recovery, carrier recovery and automatic gain control. In addition, pilot symbol aided modulation (PSAM) which can overcome the simulcast fading channel is considered and we also propose the optimum pilot symbol pattern. Finally, we show the performance of the overall 4-16QAM system by computer simulation.

  • PDF

Implementation of 1.7MHz, 25W Wireless Power Transmission(WPT) System using Coupled Magnetic Resonance (1.7MHz, 25W급 자기공명 무선전력 전송 시스템 구현)

  • Kim, Seong-Min;Cho, In-Gui;Moon, Jung-Ick
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.317-323
    • /
    • 2013
  • In this paper, 25W wireless power transmission(WPT) system using the coupled magnetic resonance is presented. The WPT system consists of a 100W class-F power transmitter, 1.7MHz magnetic resonators and a 40W full-bridge receiver using diodes. Especially, the transmit power control function using the 400MHz FSK communication between the transmitter and the receiver is adopted in the proposed system for the stable power transmission. Using the system and the power control function, the WPT system can be adopted in the various electronic devices and the commercialization of WPT system can be moved forward.

Design of a Wide-Frequency-Range, Low-Power Transceiver with Automatic Impedance-Matching Calibration for TV-White-Space Application

  • Lee, DongSoo;Lee, Juri;Park, Hyung-Gu;Choi, JinWook;Park, SangHyeon;Kim, InSeong;Pu, YoungGun;Kim, JaeYoung;Hwang, Keum Cheol;Yang, Youngoo;Seo, Munkyo;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.126-142
    • /
    • 2016
  • This paper presents a wide-frequency-range, low-power transceiver with an automatic impedance-matching calibration for TV-white-space (TVWS) application. The wide-range automatic impedance matching calibration (AIMC) is proposed for the Drive Amplifier (DA) and LNA. The optimal $S_{22}$ and $S_{11}$ matching capacitances are selected in the DA and LNA, respectively. Also, the Single Pole Double Throw (SPDT) switch is integrated to share the antenna and matching network between the transmitter and receiver, thereby minimizing the systemic cost. An N-path filter is proposed to reject the large interferers in the TVWS frequency band. The current-driven mixer with a 25% duty LO generator is designed to achieve the high-gain and low-noise figures; also, the frequency synthesizer is designed to generate the wide-range LO signals, and it is used to implement the FSK modulation with a programmable loop bandwidth for multi-rate communication. The TVWS transceiver is implemented in $0.13{\mu}m$, 1-poly, 6-metal CMOS technology. The die area of the transceiver is $4mm{\times}3mm$. The power consumption levels of the transmitter and receiver are 64.35 mW and 39.8 mW, respectively, when the output-power level of the transmitter is +10 dBm at a supply voltage of 3.3 V. The phase noise of the PLL output at Band 2 is -128.3 dBc/Hz with a 1 MHz offset.

Effects of Launching Vehicle's Velocity on the Performance of FTS Receiver (발사체의 속도가 FTS 수신기의 성능에 미치는 영향)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2014
  • A doppler shift is generated by moving a transmitter or receiver operated in communication systems. The doppler frequency shift between a transmitter and a receiver or the frequency offset present in transceivers must be removed to get the wanted system performance. FTS is used for preventing an accident from operating abnormally and for guaranteeing public protection. A launching vehicle's initial velocity is very fast in order to escape the earth and the amount of doppler shift is large. Recently many studies to adopt the next generation FTS are ongoing. To introduce new FTS, the effects of doppler shift on the performance of the new FTS must be studied. In this paper the doppler effect caused by launching vehicle's velocity affecting the performance of FTS receiver is investigated into two cases, one is for EFTS as a digital FTS and the other is for FTS using a tone signal. Noncoherent DPSK and noncoherent CPFSK are considered as the modulation methods of EFTS. In the cases of the doppler frequency shift of 200Hz present in EFTS using noncoherent DPSK and noncoherent CPFSK are simulated. Simulation results show that $E_b/N_o$ of 0.5dB deteriorates in the region of near BER of about $10^{-5}$ in RS coding. And there is no performance variation in $E_b/N_o$ or $E_b/N_o$ is worsened about 0.1dB in the same BER region for the case of using convolutional and BCH coding. Quadrature detector used in FTS using tone signals is not influenced by the doppler frequency shift.