• Title/Summary/Keyword: FSI : 유체구조연성

Search Result 75, Processing Time 0.027 seconds

Fluid Structure Interaction Analysis of Membrane Type LNG CCS Experiencing the Sloshing Impact by Impinging Jet Model (멤브레인형 LNG 화물창의 강도평가를 위해 적용된 분사모델을 이용한 유체구조 연성해석에 관한 연구)

  • Hwang, Se Yun;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.71-78
    • /
    • 2015
  • The reliable sloshing assessment methods for LNG CCS(cargo containment system) are important to satisfy the structural strength of the systems. Multiphase fluid flow of LNG and Gas Compressibility may have a large effect on excited pressures and structural response. Impinging jet model has been introduced to simulate the impact of the LNG sloshing and analyze structural response of LNG CCS as a practical FSI(fluid structure interaction) method. The practical method based on fluid structure interaction analysis is employed in order to evaluate the structural strength in actual scale for Mark III CCS. The numerical model is based on an Euler model that employs the CVFEM(control volume based finite element method). It includes the particle motion of gas to simulate not only the interphase interaction between LNG liquid and gas and the impact load on the LNG insulation box. The analysis results by proposed method are evaluated and discussed for an effectiveness of FSI analysis method.

Fluid-structure-interacted Finite Element Analysis of Valve System In a Linear Compressor (선형압축기 밸브시스템의 유체-구조 연성 유한요소해석)

  • Choi, Yong-Sik;Lee, Jun-Ho;Jeong, Weui-Bong;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.121-122
    • /
    • 2008
  • In this paper, computational analysis on the steady-state and transient behaviors of the valve system is discussed. Fluid-structure interaction (FSI) is taken into account using ADINA software. The computational results are experimentally validated.

  • PDF

Shape Design Optimization of Fluid-Structure Interaction Problems (유체-구조 연성 문제의 형상 최적설계)

  • Ha, Yoon-Do;Kim, Min-Geun;Cho, Hyun-Gyu;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.

Investigation on Aerodynamic Performance of a Highly-Loaded Axial Fan with Active/Passive Flow Control Using FSI Analysis (유체-구조 연성해석을 이용한 능동/수동 유동제어방식이 결합된 고하중 축류 팬의 성능특성 연구)

  • Ma, Sang-Bum;Kim, Kwang-Yong;Choi, Jaeho;Lee, Wonsuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.113-119
    • /
    • 2017
  • An investigation on aerodynamic performance of a highly-loaded axial fan has been conducted to find the effects of tip injection and casing groove on aerodynamic performance in this study. Three-dimensional Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model were used to analyze the fluid flow in the fan with Fluid-Structure Interaction (FSI) analysis. The hexahedral grid was used to construct computational domain, and the grid dependency test drew the optimal grid system. FSI analysis was also carried out to predict the deformation of rotor and stator blades, and the effect of deformation on the aerodynamic performance of axial fan was analyzed compared to the performance predicted without FSI analysis.

Fluid-Structure Interaction Analysis for Open Water Performance of 100 kW Horizontal Tidal Stream Turbine (유체-구조 연성을 고려한 100 kW급 수평축 조류발전 터빈의 단독성능 해석)

  • Park, Se Wan;Park, Sunho;Rhee, Shin Hyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • It is essential to consider the effect of blade deformation in order to design a better tidal stream turbine being operated in off-design condition. Flow load causes deformation on the blade, and the deformation affects the turbine performance. In the present study, CFD analysis procedures were developed to predict open water performance of horizontal axis tidal stream turbine (HATST). The developed procedures were verified by comparing the results with existing experimental results. Fluid-structure interaction (FSI) analysis method, based on the verified CFD procedure, have been carried out to estimate the turbine performance for a turbine with flexible composite blades, and then the results were compared with those for rigid blades.

A Study of the Vibration of an Axial Flow Pump through FSI Analysis Method (유체-구조 연성해석을 통한 축류펌프의 진동 연구)

  • Lee, Bo-Ram;Yun, Tae-Jong;Oh, Won-Bin;Lee, Chung-Woo;Kim, Hak Hyoung;Jeong, Yeong Jae;Kim, Ill-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.107-112
    • /
    • 2021
  • Pressure, which is a dynamic characteristic of a floodgate, is predicted using an FSI analysis method. A fluid analysis model and a hydrology analysis model were used as analysis models. As a result of the analysis, we found that a warped model has smaller acceleration than a square model. Additionally, this numerical analysis technique was applied to the actual hydrology, and the analysis results were compared with the results of the vibration tests. As a result, we confirmed that there is a small difference between the results of the vibration tests and the results of the FSI analysis. Through this analysis, the applicability and reliability of the FSI analysis method were verified. We concluded that the pressure of a floodgate can be measured through an FSI analysis method.

Energy Flow Finite Element Analysis for High Frequency Acoustic and Vibrational Prediction of Complicated Plate Structures Considering Fluid-Structure Interaction (복합평판구조물의 고주파수 대역 유체/구조 연성 소음진동예측을 위한 에너지흐름유한요소해석)

  • Tae-Heum Yoon;Young-Ho Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.20-30
    • /
    • 2023
  • In this paper, the Energy Flow Finite Element Analysis (EFFEA) was performed to predict the acoustic and vibrational responses of complicated plate structures considering improved Fluid-Structure Interaction (FSI). For this, a new power transfer relationship was derived at the area junction where two different fluids are in contact on both sides of the plate. In order to increase the reliability of EFFEA of complicated plate structures immersed in a high-density fluid, the corrected flexural wavenumber and group velocity considering fluid-loading effect were derived. As the specific acoustic impedance of the fluid in contact with the plate increases, the flexural wavenumber of the plate increases. As a result, the flexural group velocity is reduced, and the spatial damping effect of the flexural energy density is increased. Additionally, for the EFFEA of arbitary-shaped built-up structures, the energy flow finite element formulation for the acoustic tetrahedral element was newly performed. Finally, for validation of the derived theory and developed software, numerical applications of complicated plate structures submerged in seawater or air were successfully performed.

TWO-WAY F냐 simulation OF THE DIAPHRAGM COMPRESSOR AND NON-RETURN CHECK VALVE (고압용 다이아프램 압축기 및 체크 밸브의 2-way FSI 수치해석)

  • Choi, B.S.;Yoon, H.G.;Yoo, I.S.;Park, M.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.86-92
    • /
    • 2010
  • A metal diaphragm compressor has been widely used for supplying a high pressures gas. This compressor mainly consists of gas oil space and metal diaphragm. Gas sucked in the gas space is compressed by an oscillating metal diaphragm existed between the gas and oil space. A non-return discharge and suction check-valve are components of the compressor that draw off the compressed oil and gas. Those components are self-actuated by differential pressures. Therefore, the rapid response and stable operating conditions are required. In the present study, to find out the dynamic behavior of the suction, discharge valve and diaphragm compressor, the unsteady flow field has been investigated numerically by using the unsteady two-way FSI (Fluid Structure Interaction) simulation method, $k-{\omega}$ turbulent model and mesh deformation.

  • PDF

Numerical Study of Surface Heat Transfer Effects of Multiple Fan-Shaped Small-Scale Fins (다중 미세 날개구조의 표면 열전달에 미치는 영향분석)

  • Park, Ki-Hong;Park, Sang Hu;Lee, Ju-Chul;Min, June-Kee;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.523-530
    • /
    • 2013
  • In this work, we study a heat transfer enhancement technology using fan-shaped small-scale fins. Fins having a thickness of 10 ${\mu}m$ move up-down by a pulsating flow. Owing to these motions, the heat transfer on a surface increases dramatically. The two-way FSI (fluid-structure interaction) method was applied for the analysis, and the analysis model was evaluated using a single fin model by comparing the experimental results. In summary, a maximum 40% increase in heat transfer capacity using a single and multiple small-scale fins was obtained in comparison with the results obtained without using fins. From this work, we believe that the proposed method can be a promising method for heat transfer enhancement in real applications.