• Title/Summary/Keyword: FRP-RC beams

Search Result 140, Processing Time 0.032 seconds

Premature Failure Criteria of RC Beams Strengthened with FRP I (FRP보강 RC보의 조기파괴기준 I)

  • Kim, Tae-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.137-140
    • /
    • 2005
  • This paper focuses on the premature failure of RC beams bonded with FRP. A number of failure modes for RC beams bonded with FRP have been observed in numerous experimental studies during past decade. Particularly, Rip-off failure and Debonding failure were majority failure modes in RC beams bonded with FRP. Rip-off failure occurred at the plate end due to high interfacial shear and normal stresses however Debonding failure was caused by the yielding of reinforcing bar and the increasing of shear deformation in shear span. On the basis of premature failure mechanism in RC beams bonded with FRP, Basic strengthening length and Premature failure criteria were derived

  • PDF

Flexural Performance of RC Beams Strengthened with Diffrent Amount of CFRP Composite (탄소섬유복합체로 보강된 RC부재의 보강재 강성에 따른 휨 보강성능)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.129-132
    • /
    • 2006
  • It is generally reported that most of RC beams strengthened with simply bonded FRP composite is failed by FRP debonding. Also, the flexural performance of RC member strengthened with FRP composite can be calculated using the effective strain of FRP. The effective strain as a result of the debonding failure depends on many variables, such as FRP stiffness including the thickness($t_f$) and modulus of elasticity($E_f$), the amount of FRP but the FRP stiffness is reportedly the most influential. The purpose of this paper, therefore, is to examine effects of FRP stiffness on the flexural strengthening of RC beams. 4 different stiffness of CFRP composite including CFRP sheet and laminae were selected. From the tests, it was found that the flexural performance of RC beams strengthened with CFRP composite can be calculated based on the effective strain of the CFRP composite and the effective strain is inversely proportional to the CFRP stiffness.

  • PDF

Experimental Study for Shear Behavior of RC Beam Strengthened with Channel-type FRP Beam (채널형 FRP빔으로 보강된 RC보의 전단거동에 관한 실험적 연구)

  • Hong, Ki-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2009
  • A recent and promising method for shear strengthening of reinforced concrete(RC) members is the use of near surface mounted(NSM) fiber reinforced polymer(FRP) reinforcement. In the NSM method, the reinforcement is embedded in grooves cut onto the surface of the member to be strengthened and filled with an appropriate binding agent such as epoxy paste or cement grout. This paper illustrates a research program on shear strengthening of RC beams with NSM channel-type FRP beams which is developed in this study. The objective of this study is to clarify the role of channel-type FRP beam embedded to the beam web for shear strengthening of reinforced concrete beams. Included in the study are effectiveness in terms of spacing and angle of channel-type FRP beams, strengthening method, and shear span ratio. the study also aims to understand the additional shear capacity due to glass fiber reinforced polymer beams and carbon reinforced polymer beams. And anther objective is to study the failure modes, shear strengthening effect on ultimate force and load deflection behavior of RC beams embedded with channel-type FRP beams on the shear region of the beams.

Determining the shear strength of FRP-RC beams using soft computing and code methods

  • Yavuz, Gunnur
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • In recent years, multiple experimental studies have been performed on using fiber reinforced polymer (FRP) bars in reinforced concrete (RC) structural members. FRP bars provide a new type of reinforcement that avoids the corrosion of traditional steel reinforcement. In this study, predicting the shear strength of RC beams with FRP longitudinal bars using artificial neural networks (ANNs) is investigated as a different approach from the current specific codes. An ANN model was developed using the experimental data of 104 FRP-RC specimens from an existing database in the literature. Seven different input parameters affecting the shear strength of FRP bar reinforced RC beams were selected to create the ANN structure. The most convenient ANN algorithm was determined as traingdx. The results from current codes (ACI440.1R-15 and JSCE) and existing literature in predicting the shear strength of FRP-RC beams were investigated using the identical test data. The study shows that the ANN model produces acceptable predictions for the ultimate shear strength of FRP-RC beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model provides more accurate predictions for the shear capacity than the other computed methods in the ACI440.1R-15, JSCE codes and existing literature for considering different performance parameters.

Nonlinear Analysis of Reinforced Concrete Beams Shear-Strengthened with Fiber Reinforced Polymer Composites (FRP로 전단보강된 철근콘크리트 보의 비선형 해석)

  • Kim, Sang-Woo;Hwang, Hyun-Bok;Lee, Bum-Sik;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.835-838
    • /
    • 2008
  • This study presents the nonlinear finite element analysis to predict the behavior of reinforced concrete (RC) beams shear-strengthened with fiber-reinforced polymer laminates (FRP). In this paper, modeling concept for the FRP is introduced to enable the use of finite element methods for the shear analysis of RC beams shear-strengthened with FRP composites. The numerical techniques are used to represent the FRP composite, bond properties between the FRP and the concrete, and the RC beams. According to the proposed modeling methods, a finite element analysis is performed using a two-dimensional nonlinear finite element analysis program, VecTor2, based on the Disturbed Stress Field Model (DSFM). To verify the application of the DSFM for the prediction of the behavior of the shear-critical beams strengthened with FRP composites in shear, a detailed comparison between experimental and numerical results for the response of the RC beams is carried out.

  • PDF

Tests and Design Provisions for Reinforced-Concrete Beams Strengthened in Shear Using FRP Sheets and Strips

  • Mofidi, Amir;Chaallal, Omar
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.117-128
    • /
    • 2014
  • Numerous investigations of RC beams strengthened in shear with externally-bonded (EB) fibre-reinforced polymer (FRP) sheets, plates and strips have been successfully conducted in recent years. These valuable studies have highlighted a number of influencing parameters that are not captured by the design guidelines. The objective of this study was: (1) to highlight experimentally and analytically the influential parameters on the shear contribution of FRP to RC beams strengthened in shear using EB FRP sheets and strips; and (2) to develop a set of transparent, coherent, and evolutionary design equations to calculate the shear resistance of RC beams strengthened in shear. In the experimental part of this study, 12 tests were performed on 4,520-mm-long T-beams. The specimens were strengthened in shear using carbon FRP (CFRP) strips and sheets. The test variables were: (1) the presence or absence of internal transverse-steel reinforcement; (2) use of FRP sheets versus FRP strips; and (3) the axial rigidity of the EB FRP reinforcement. In the analytical part of this study, new design equations were proposed to consider the effect of transverse-steel in addition to other influential parameters on the shear contribution of FRP. The accuracy of the proposed equations has been verified in this study by predicting the FRP shear contribution of experimentally tested RC beams.

Performance of RC Beams Strengthened with FRP-Aluminum Composite Hollow Beam Under the Fire (RC보에 대한 FRP-Aluminum 유공복합보의 보강성능에 관한 연구)

  • Lee, Jae-Ik;Choi, Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • The widespread deterioration of concrete structures has required the development of new and innovative materials and technologies for strengthening and repair. Recently Fiber reinforced polymer(FRP) composites have received widespread attention as materials for the strengthening and repair of the deteriorated concrete structures. This paper presents the results of Fire-performance of RC beams strengthened with FRP-Aluminum composit hollow beams. Test results show that the higher-damaged FRP strengthened RC beams are more vulnerable to the fire and decrease the effect of FRP strenthening.

Premature failure Criteria of RC Beams Strengthened with FRP II (FRP보강 RC보의 조기파괴기준 II)

  • Kim, Tae-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.141-144
    • /
    • 2005
  • Rip-off failure and Debonding failure were commonly reported premature failure modes. The main reasons of premature failure in RC beams bonded with FRP were strengthening length and the reinforcement ratio. in this study, On the basis of premature failure mechanism in RC beams bonded with FRP, premature failure criteria were proposed. Also It was verified that Rip-off failure and Debonding failure occured according to premature failure criteria

  • PDF

Prediction Model Using Upper Bound Theorem of Shear Strength for RC Beams Strengthened by FRP (상한계 이론을 이용한 FRP로 보강된 RC보의 전단강도 예측 모델)

  • 홍성걸;문선혜
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.908-911
    • /
    • 2003
  • This study was performed to verify the effect of reinforcement of RC Beams strengthened($90^{\circ}$ strip type) by FRP(CFRP) and Predited the shear strength of them using the upper bound theorem. The prediction model was confirmed with the result of the FEM analysis. The analyzed result showed thar shear-damaged RC beams by strengthened by FRP was improved their shear capacity.

  • PDF

Impact Resistance Evaluation of RC Beams Strengthened with Carbon FRP Sheet and Steel Fiber (CFRP 시트 및 강섬유로 보강된 RC 보의 충격저항 성능 평가)

  • Cho, Seong-Hun;Min, Kyung-Hwan;Kim, Yun-Ji;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.719-725
    • /
    • 2010
  • The analysis and experimental program of reinforced concrete (RC) structures for resistance against such extreme loads as earthquake, blast, and impact have been carried by many researchers and designers. Under the extreme loads, a large amount of energy is suddenly exerted to the structure, hence if the structure fails to absorb the impact energy, catastrophic collapse may occur. To prevent catastrophic collapse of structures, reinforced concrete must have adeguate toughness or it needs to be strengthened. The FRP strengthening method and SFRC are studied widely in resistance of impact load because of their high energy absorption capacity. In this study, drop weight impact tests were implemented to evaluate the impact resistance of SFRC and FRP strengthened RC beam while the total steel fiber volume fractions was fixed at 0.75% carbon FRP flexural strengthened RC beams. Futhermore, to prevent the shear-plug cracks when the impact load strikes the beams, additional FRP shear strengthening method are applied. The experimental, results showed that the FRP strengthened RC SFRC beams has high resistance of shear-plug cracks and crack width and SFRC has high resistance of concrete spalling failure compared to normal RC beams. The FRP flexural and shear strengthening RC beams has weakness in the spalling failure because the impact load concentrated the concrete face which is not strengthened with FRP sheets.