• Title/Summary/Keyword: FRP sheets

Search Result 128, Processing Time 0.022 seconds

Experimental and FE investigation of repairing deficient square CFST beams using FRP

  • Mustafa, Suzan A.A.
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.187-200
    • /
    • 2018
  • This paper handles the repairing of deficient square Concrete-Filled Steel-Tube (CFST) beams subject to bending through an experimental and numerical program. Eight square-CFST beams were tested. A 5-mm artificial notch was induced at mid-span of seven beams, four of them were repaired by using CFRP sheets and two were repaired by using GFRP sheets. The beam deflection, strain and ultimate moments were recorded. It was found that providing different cut-off points for the different layers of FRP sheets prohibited failure at termination points due to stress concentrations. Using different lengths of FRP sheets around the notch retarded crack propagation and prevented FRP rupture at the crack position. Finite element analysis was then conducted and the proposed FE model was verified against the recorded experimental data. The influence of various parameters as FRP sheet length, tensile modulus and the number of layers were studied. The moment capacity of damaged square-CFST beams was improved up to 77.6% when repaired by using four layers of CFRP, however, this caused a dramatic decrease in beam deflection. U-wrapping of notched-CFST beam with 0.75 of its length provided a comparable behaviour as wrapping the full length of the beam.

Comparative Study on Seismic Performance of Masonry Wall Strengthened by FRP Sheet or Steel-Bar Truss System (FRP 시트 및 강봉 트러스 시스템으로 보강된 조적벽의 내진성능 비교 연구)

  • Lee, Hye-Ji;Kim, Sanghee;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, the in-plane and out-of-plane seismic performance of the masonry wall strengthened using the steel bar truss system proposed by Hwang et al. (2021a, 2021b) or using FRP sheets were compared and evaluated. The maximum strength of the masonry wall reinforced with FRP sheets for the in-plane and out-of-plane loading was 71% and 85%, respectively, of that of the non-reinforced masonry wall. Meanwhile, the maximum strength of the masonry wall reinforced with the steel bar truss system was approximately 1.8 times higher than that of the non-reinforced masonry wall. Compared with the FRP sheet method, the steel bar truss system was excellent at improving the maximum load capacity, rigidity, and energy dissipation capacity. However, in the case of a masonry wall reinforced with FRP sheets, the masonry wall was overstrengthened with the FRP sheets covering the entire masonry wall, and it is considered that the overstrengthened specimen experienced sliding failure, resulting in a lower strength than the other specimens. A follow-up study is needed to compare the seismic performance of the specimen involving only a part of the masonry wall reinforced with the FRP sheets and the specimen reinforced using the steel bar truss system.

Behavior of FRP-reinforced steel plate shear walls with various reinforcement designs

  • Seddighi, Mehdi;Barkhordari, Mohammad A.;Hosseinzadeh, S.A.A.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.729-746
    • /
    • 2019
  • The nonlinear behavior of single- and multi-story steel plate shear walls (SPSWs) strengthened with three different patterns of fiber reinforced polymer (FRP) laminates (including single-strip, multi-strip and fully FRP-strengthened models) is studied using the finite element analysis. In the research, the effects of orientation, width, thickness and type (glass or carbon) of FRP sheets as well as the system aspect ratio and height are investigated. Results show that, despite an increase in the system strength using FRP sheets, ductility of reinforced SPSWs is decreased due to the delay in the initiation of yielding in the infill wall, while their initial stiffness does not change significantly. The content/type/reinforcement pattern of FRPs does affect the nonlinear behavior characteristics and also the mode and pattern of failure. In the case of multi-strip and fully FRP-strengthened models, the use of FPR sheets almost along the direction of the infill wall tension fields can maximize the effectiveness of reinforcement. In the case of single-strip pattern, the effectiveness of reinforcement is decreased for larger aspect ratios. Moreover, a relatively simplified and approximate theoretical procedure for estimating the strength of SPSWs reinforced with different patterns of FRP laminates is presented and compared with the analytical results.

Properties of Ductile Hybrid FRP Sheet for Strengthening of Reinforced Concrete Beams (철근콘크리트 보의 보강용 연성 하이브리드 FRP 시트의 특성)

  • Song, Hyung-Soo;Lee, Chin-Yong;Min, Chang-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.509-510
    • /
    • 2009
  • In strengthening reinforced concrete beams using fiber reinforced polymer sheets, brittle structural failures occur due to the linear stress-strain relationship of the fibers. Hybrid fiber reinforced polymer sheets using two different types of fibers were investigated in this study

  • PDF

Response of lap splice of reinforcing bars confined by FRP wrapping: modeling approach

  • Thai, Dam Xuan;Pimanmas, Amorn
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.95-110
    • /
    • 2011
  • This paper presents a tri-uniform bond stress model for predicting the lap splice strength of reinforcing bar at the critical bond splitting failure. The proposed bond distribution model consists of three zones, namely, splitting zone, post-splitting zone and yielding zone. In each zone, the bond stress is assumed to be constant. The models for bond strength in each zone are adopted from previous studies. Combining the equilibrium, strain-slip relation and the bond strength model in each zone, the steel stress-slip model can be derived, which can be used in the nonlinear frame analysis of the column. The proposed model is applied to derive explicit equations for predicting the strength of the lap splice strengthened by fiber reinforced polymer (FRP) in both elastic and post-yield ranges. For design purpose, a procedure to calculate the required FRP thickness and the number of FRP sheets is also presented. A parametric investigation was conducted to study the relation between lap splice strength and lap splice length, number and thickness of FRP sheets and the ratio of concrete cover to bar diameter. The study shows that the lap splice strength can be enhanced by increasing one of these parameters: lap splice length, number or thickness of FRP sheets and concrete cover to bar diameter ratio. Verification of the model has been conducted using experimental data available in literature.

Flexural Behavior of Strengthened RC Beams Using FRP Sheets (FRP시트를 이용한 보강 철근콘크리트보의 휨 거동)

  • 박대효;부준성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.75-80
    • /
    • 2001
  • This paper investigates the flexural behavior of reinforced concrete beams strengthened with externally bonded fiber reinforced plastic (FRP) sheets is investigated in this work. FRP is attractive for strengthening the RC beams due to its good tensile strength, low weight, resistance to corrosion, and easy applicability. A simple and direct analytical procedure for evaluating the ultimate flexural capacity of FRP strengthened reinforced concrete (SRC) beams is presented using the equilibrium equations and compatibility of strains. Upper and lower limits of FRP sheet area to ensure the ductile behavior are established. A parametric study is conducted to investigate the effects of design variables such as sheet area, sheet stiffness and strength, concrete compression strength, and steel reinforcement ratio. The analytical procedure is compared with results of experimental data available in the literature.

  • PDF

Analysis of Behaviors of Concrete Strengthened with FRP Sheets and Steel Fibers Under Low-Velocity Impact Loading (저속 충격하중에서의 FRP Sheet 및 강섬유 보강 콘크리트의 거동 해석)

  • Lee, Jin Young;Kim, Mi Hye;Min, Kyung Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.155-164
    • /
    • 2011
  • In the case of impact loading test, measurement of the test data has difficulties due to fast loading velocity. In addition, the dynamic behaviors of specimens are distorted by ignoring local fracture. In this study, therefore, finite element analysis which considers local fracture and strain rate effect on impact load was performed by using LS-DYNA, an explicit analysis program. The one-way and two-way specimens strengthened with FRP Sheets and steel fibers were considered as analysis models. The results showed that the impact resistance of steel fiber reinforced concrete (SFRC) and ultra high performance concrete (UHPC) was enhanced. In the case of specimens strengthened with FRP Sheets, GFRP was superior to CFRP in the performance of impact resistance, and there was little effect of the FRP Sheet orientation. The reliability of this analysis model was verified by comparing with previous experimental results.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

Full scale tests of RC joints with minor to moderate seismic damage repaired using C-FRP sheets

  • Karayannis, Chris G.;Golias, Emmanuil
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.617-627
    • /
    • 2018
  • After earthquakes FRP sheets are often used for the rehabilitation of damaged Reinforced Concrete (RC) beamcolumn connections. Connections with minor to moderate damage are often dealt with by applying FRP sheets after a superficial repair of the cracks using resin paste or high strength mortar but without infusion of thin resin solution under pressure into the cracking system. This technique is usually adopted in these cases due to the fast and easy-to-apply procedure. The experimental investigation reported herein aims at evaluating the effectiveness of repairing the damaged beam-column connections using FRP sheets after a meticulous but superficial repair of their cracking system using resin paste. The investigation comprises experimental results of 10 full scale beam-column joint specimens; five original joints and the corresponding retrofitted ones. The repair technique has been applied to RC joints with different joint reinforcement arrangements with minor to severe damage brought about by cyclic loading for the purposes of this work. Aiming at quantitative concluding remarks about the effectiveness of the repair technique, data concerning response loads, loading stiffness and energy absorption values have been acquired and commented upon. Furthermore, comparisons of damage index values and values of equivalent viscous damping, as obtained during the test of the original specimens, with the corresponding ones observed in the loading of the repaired ones have also been evaluated and commented. Based on these comparisons, it is deduced that the technique under investigation can be considered to be a rather satisfactory repair technique for joints with minor to moderate damage taking into account the rapid, convenient and easy-to-apply character of its application.

Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens

  • Guler, Soner
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.709-722
    • /
    • 2014
  • Ultra-High Performance Concrete (UHPC) is an innovative new material that, in comparison to conventional concretes, has high compressive strength and excellent ductility properties achieved through the addition of randomly dispersed short fibers to the concrete mix. This study presents the results of an experimental investigation on the behavior of axially loaded UHPC short circular columns wrapped with Carbon-FRP (CFRP), Glass-FRP (GFRP), and Aramid-FRP (AFRP) sheets. Six plain and 36 different types of FRP-wrapped UHPC columns with a diameter of 100 mm and a length of 200 mm were tested under monotonic axial compression. To predict the ultimate strength of the FRP-wrapped UHPC columns, a simple confinement model is presented and compared with four selected confinement models from the literature that have been developed for low and normal strength concrete columns. The results show that the FRP sheets can significantly enhance the ultimate strength and strain capacity of the UHPC columns. The average greatest increase in the ultimate strength and strain for the CFRP- and GFRP-wrapped UHPC columns was 48% and 128%, respectively, compared to that of their unconfined counterparts. All the selected confinement models overestimated the ultimate strength of the FRP-wrapped UHPC columns.