• Title/Summary/Keyword: FRP sheet

Search Result 133, Processing Time 0.031 seconds

Strengthening Performance of RC Beams Exposed to Freezing and Thawing Cycles after Strengthening in Shear with CFRP Sheet (CFRP 쉬트로 전단보강후 동결융해에 노출된 철근콘크리트 보의 보강성능)

  • Yun, Hyun-Do;Kim, Sun-Woo;Kim, Yun-Su;Lee, Min-Jung;Seo, Soo-Yeon;Choi, Ki-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.161-164
    • /
    • 2008
  • In recent years, carbon fiber-reinforced polymer (CFRP) has been widely used for repairing and/or strengthening structural elements in concrete. Not enough test data, however, are available to predict the long-term performance of the repaired and improved structures exposed to weathering. The objective of this research is to study the effect of freeze-thaw cycling on the behavior of reinforced concrete (RC) beams strengthened in shear with carbon fiber sheet. Six small-scale RC beams (100mm${\times]$100mm${\times]$400mm) were strengthened with CFRP in shear, subjected to up to 400 cycles freeze-thawing from -17${\sim}4^{\circ}C$, and tested to failure in four-point bending. Test result, there was no significant damage to carbon fiber sheet strengthened concrete beams had been suffered 30 cycles of freeze-thawing, and more over 60 cycles of freezing-thawing brought about a reduction in resistance of only 25% of the initial level.

  • PDF

Evaluation of Local Damages and Residual Performance of Blast Damaged RC Beams Strengthened with Steel Fiber and FRP Sheet (폭발 손상을 입은 강섬유 및 FRP 시트 보강 철근콘크리트 보의 국부손상 및 잔류성능 평가)

  • Lee, Jin-Young;Jang, Dae-Sung;Kwon, Ki-Yeon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.627-634
    • /
    • 2014
  • In this study, standoff detonation tests and static beam tests on $160{\times}290{\times}2200mm$ RC beams were conducted to investigate the effect of local damage on the flexural strength and ductility index. And also, blast resistance of RC beams strengthened with steel fiber and FRP sheet were evaluated by these tests. The standoff detonation tests were performed with charge weight of 1kg and standoff distance of 0.1m. After the tests, crater diameters and loss weights of specimens were measured to evaluate the local damage of specimens. Flexural strength and ductility index were measured by conducting the static beam tests on the damaged and undamaged specimens. As a test results, normal concrete specimen(NC) showed relatively large crater and spall diameters that caused weight loss of 23.5kg as a local damage. Whereas, steel fiber reinforced concrete specimen(SFRC) and FRP sheet retrofitted specimens(NC-F, NC-FS) showed higher blast resistance than NC by reducing crater size and weight loss. Flexural strength and ductility index were decreased in case of local damaged specimens by detonation. Especially, large decrease of flexural strength was shown in NC as compared with intact specimen and brittle failure was occurred due to buckling of compressive reinforcement. In case of specimens strengthened with steel fiber and FRP sheet, residual flexural strength and ductility index were increased as compared with NC. In these results, it is concluded that critical local damage can be occurred unless enough standoff distance can be assured even if the charge weight is small. and it is verified that strengthening method using steel fiber and FRP sheet can increase blast resistance.

Flexural Strengthening Effects of RC Beam Reinforced with Pre-stressing Plate (긴장을 가한 보강 플레이트로 보강된 RC 보의 휨보강 효과)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.171-178
    • /
    • 2019
  • Fiber-reinforced polymer (FRP) composites have proved to be reliable as strengthening materials. Most of existing studies used single types of FRP composites. Therefore, in this experimental study, carbon FRP sheet, aramid FRP sheet, and hybrid FRP plate including glass fibers were fabricated, and the effect of pre-stressed FRP composites on flexural strengthening of reinforced concrete (RC) beams was investigated. In total, eight RC beam specimens were fabricated, including one control beam (specimen N) without FRP composites and seven FRP-strengthened beams. The main parameters were type of FRP composite, the number of anchors used for pre-stressing, and thickness of FRP plates. As a result, the beam strengthened with pre-stressed FRP plate showed superior performance to the non-strengthened one in terms of initial strength, strength and stiffness at yielding, and ultimate strength. As the number of anchors and thickness of FRP plate (i.e., amount of FRP plates) increased, the strengthening effect increased as well. When hybrid FRP plates were pre-stressed, the strengthening effect was higher in comparison with pre-stressed single type FRP plate.

Properties of Ductile Hybrid FRP Sheet for Strengthening of Reinforced Concrete Beams (철근콘크리트 보의 보강용 연성 하이브리드 FRP 시트의 특성)

  • Song, Hyung-Soo;Lee, Chin-Yong;Min, Chang-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.509-510
    • /
    • 2009
  • In strengthening reinforced concrete beams using fiber reinforced polymer sheets, brittle structural failures occur due to the linear stress-strain relationship of the fibers. Hybrid fiber reinforced polymer sheets using two different types of fibers were investigated in this study

  • PDF

Flexural Performance of RC Beams Strengthened with Diffrent Amount of CFRP Composite (탄소섬유복합체로 보강된 RC부재의 보강재 강성에 따른 휨 보강성능)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.129-132
    • /
    • 2006
  • It is generally reported that most of RC beams strengthened with simply bonded FRP composite is failed by FRP debonding. Also, the flexural performance of RC member strengthened with FRP composite can be calculated using the effective strain of FRP. The effective strain as a result of the debonding failure depends on many variables, such as FRP stiffness including the thickness($t_f$) and modulus of elasticity($E_f$), the amount of FRP but the FRP stiffness is reportedly the most influential. The purpose of this paper, therefore, is to examine effects of FRP stiffness on the flexural strengthening of RC beams. 4 different stiffness of CFRP composite including CFRP sheet and laminae were selected. From the tests, it was found that the flexural performance of RC beams strengthened with CFRP composite can be calculated based on the effective strain of the CFRP composite and the effective strain is inversely proportional to the CFRP stiffness.

  • PDF

Construction Method Improvement of the FRP-plate Strengthening Method using the Velcro (벨크로를 이용한 FRP 플레이트 보강공법의 시공공법 개선)

  • Hong, Geon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.225-232
    • /
    • 2008
  • The object of this paper is to study the flexural strengthening effectiveness on the construction method of bonding of the FRP. The existing FRP flexural strengthening methods were divided into FRP sheet strengthening and FRP plate strengthening according to the FRP condition. For improving the existing construction method, this paper proposed the velcro type anchorage system for temporary bonding material, and flexural strengthening effects were tested. Test variables were bonding methods of the FRP strengthening materials, and total 4 specimens were tested. Following to the test results, it is shown that FRP-plate strengthening method using the velcro can get better workability than existing construction methods, and have excellent strengthening performance including flexural strength, stiffness, ductility and failure aspect.

Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet (FRP로 보강한 비보강 조적 벽체의 전단강도 산정)

  • Bae, Baek-Il;Yun, Hyo-Jin;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.305-313
    • /
    • 2012
  • Unreinforced masonry buildings represent a significant portion of the existing and historical buildings around the world. Recent earthquakes have shown the need for seismic retrofitting for these types of buildings. Various types of retrofitting materials (i.e., shotcrete, ECC and Fiber Reinforced Polymer sheets (FRPs)) for unreinforced masonry buildings (URM) have been developed. Engineers prefer to use FRPs, because these materials enhance the shear strength of the wall without expansion of wall sectional area and adding weight to the total structure. However, the complexity of the mechanical behavior of the masonry wall and the lack of experimental data from walls retrofitted by FRPs may cause problems for engineers to determine an appropriate retrofitting level. This paper investigate in-plane behavior of URM and retrofitted masonry walls using two different types of FRP materials to determine and provide information for the retrofitting effect of FRPs on masonry shear walls. Specimens were designed to idealize the wall of a low-rise apartment which was built in 1970s in Korea with no seismic reinforcements with an aspect ratio of 1. Retrofitting materials were carbon FRP and Hybrid sheets which have different elastic modulus and ultimate strain capacities. Consequently, this study evaluated the structural capacity of masonry shear walls and the retrofitting effect of an FRP sheet for in-plane behavior. Also, the results were compared to the results obtained from the evaluation method for a reinforced concrete beam retrofitted with FRPs.

Optimum Combination of Carbon and Glass Fiber Composite to Obtain the Hybrid Effect (하이브리드 효과를 주는 탄소섬유와 유리섬유의 최적 조합비)

  • Song, Hyung-Soo;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.405-411
    • /
    • 2011
  • Using combinations of carbon and glass fiber composites normally used for strengthening of concrete structures, the hybrid effect from strengthening concrete structures using the composite is studied. To produce the hybrid effects, the specimens were made with optimum proportions of carbon fibers with glass fibers. Then, direct tensile tests were conducted on the hybrid FRP (fiber reinforced polymer) specimens. Unlike the woven fiber sheet currently used in construction sites, the FRP specimens have to be directly combined with the fibers, which make the work very complicated. Therefore, direct tensile test specimens manufacturing method based on the combination of high-tension carbon fibers and E-type glass fibers was proposed and the effects of hybridization is studied through the direct tensile test. By comparing the ductility index, the modulus of elasticity, and the stress-strain curves of the specimens, the most optimum glass to carbon fiber combination ratio for the hybrid FRP was found to be 9 to 1 with ductile K-type epoxy. The study results are discussed in detail in the paper.

Nonlinear Analysis of FRP Strengthened Reinforced Concrete Columns by Force-Based Finite Element Model (하중기반 유한요소모델에 의한 FRP 보강 철근콘크리트 기둥의 비선형 해석)

  • Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.529-537
    • /
    • 2013
  • The aim of the current study is to develop a nonlinear isoparametric layered frame finite element (FE) analysis of FRP strengthened reinforced concrete (RC) beam or column members by a force-based FE formulation. In sections, concrete is modeled in the triaxial stress-strain relationship state and the FRP sheet is modeled as layered composite materials in two-dimension. The element stiffness matrix derived by the force-based FE has the force-interpolation functions without assuming the displacement shape functions. A lateral load test of RC column strengthened by GFRP sheets was analyzed by the developed force-based FE model. From comparative studies of the experimental and analysis results, it was shown to compare with the stiffness FE method that the force-based FE analysis could give more accurate predictions in the overall lateral load-deflection response as well as in nonlinear deformations and damages in the column plastic hinge region.

Bonding Characteristics of Basalt Fiber Sheet as Strengthening Material for Railway Concrete Structures (Basalt 섬유쉬트의 철도시설 콘크리트구조물 보강재로서의 부착거동 연구)

  • Park, Cheol-Woo;Sim, Jong-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.641-648
    • /
    • 2009
  • Concrete structures become more common in railway systems with an advancement of high speed train technologies. As the service life of concrete structures increases, structural strengthening for concrete structures may be necessary. There are several typical strengthening techniques using steel plate and fiber reinforced polymer (FRP) materials, which have their own inherent shortcomings. In order to enhance greater durability and resistance to fire and other environmental attacks, basalt fiber material attracts engineer's attention due to its characteristics. This study investigates bonding performance of basalt fiber sheet as a structural strengthening material. Experimental variables include bond width, length and number of layer. From the bonding tests, there were three different types of bonding failure modes: debonding, rupture and rip-off. Among the variables, bond width indicated more significant effect on bonding characteristics. In addition the bond length did not contribute to bond strength in proportion to the bond length. Hence this study evaluated effective bond length and effective bond strength. The effective bond strength was compared to those suggested by other researches which used different types of FRP strengthening materials such as carbon FRP.