• 제목/요약/키워드: FRP concrete

검색결과 751건 처리시간 0.027초

탄소섬유쉬트로 보강된 각형 CFT기둥의 실험 및 설계식 (The Experiment and Design Formula of Rectangular CFT Columns Reinforced by Carbon Fiber Sheets)

  • 박재우;정성훈
    • 한국산학기술학회논문지
    • /
    • 제11권10호
    • /
    • pp.4024-4030
    • /
    • 2010
  • 본 연구에서는 FRP 보강된 각형 CFT기둥의 중심축하중 실험과 이력거동실험을 수행하였다. 실험변수는 중심축하중 실험에서는 폭-두께비, FRP보강겹수이며, 이력실험에서는 콘크리트 강도와 FRP 보강겹수이다. 실험체의 내력과 연성능력을 정리하였고, FRP로 보강된 각형 CFT기둥의 압축내력 설계식을 제안한다.

A State-of-the-Art Review on Debonding Failures of FRP Laminates Externally Adhered to Concrete

  • Kang, Thomas H.K.;Howell, Joe;Kim, Sang-Hee;Lee, Dong-Joo
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권2호
    • /
    • pp.123-134
    • /
    • 2012
  • There is significant concern in the engineering community regarding the safety and effectiveness of fiber-reinforced polymer (FRP) strengthening of RC structures because of the potential for brittle debonding failures. In this paper, previous research programs conducted by other researchers were reviewed in terms of the debonding failure of FRP laminates externally attached to concrete. This review article also discusses the influences on bond strength and failure modes as well as the existing experimental research and developed equations. Based on the review, several important conclusions were re-emphasized, including the finding that the bond transfer strength is proportional to the concrete compressive strength; that there is a certain bond development length that has to be exceeded; and that thinner adhesive layers in fact lower the chances of a concrete-adhesive interface failure. It is also found that there exist uncertainty and inaccuracy in the available models when compared with the experimental data and inconsistency among the models. This demonstrates the need for continuing research and compilation of data on the topic of FRP's bond strength.

Flexural performance of FRP-reinforced concrete encased steel composite beams

  • Kara, Ilker Fatih
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.775-793
    • /
    • 2016
  • This paper presents a numerical method for estimating the curvature, deflection and moment capacity of FRP-reinforced concrete encased steel composite beams (FRP-RCS). A sectional analysis is first carried out to predict the moment-curvature relationship from which beam deflection and moment capacity are then calculated. Comparisons between theoretical and experimental results of tests conducted elsewhere show that the proposed numerical technique can accurately predict moment capacity and deflection of FRP-RCS composite beam. The numerical results also indicated that beam ductility and stiffness are improved when encased steel is added to FRP reinforced concrete beams. ACI, ISIS and Bischoff models for deflection prediction compared well at low load, however, significantly underestimated the experimental results for high load levels.

사장교용 FRP-콘크리트 합성바닥판의 부모멘트부 성능평가 (Performance Evaluation of FRP-Concrete Composite Deck for Cable Stayed Bridges)

  • 김성태;박성용;조근희;조정래;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.49-50
    • /
    • 2009
  • 본 연구는 FRP 패널 위에 콘크리트를 타설하여 구조물을 완성시키는 FRP-콘크리트 합성 바닥판에 대한 것으로서, 이를 프리캐스트 방식으로 제작하여 교량 거더와 합성시킬 때 바닥판의 지점부에서 발생하는 부모멘트를 보강하기 위한 설계법을 제시하고 실험을 통해 그 적합성을 평가했다.

  • PDF

Retrofit Design of Damaged Prestressed Concrete Cylinder Pipes

  • Lee, Yongjei;Lee, Eun-Taik
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권4호
    • /
    • pp.265-271
    • /
    • 2013
  • Prestressed concrete cylindrical pipe (PCCP) has been widely used for the distribution of water in communal, industrial, and agricultural systems for a long time. However, as it deteriorates, structural failures have been experienced. Replacing the entire existing PCCP with partial damages is not an economical method. Currently, as a cost effective repairing method, a new approach using fiber reinforced polymer (FRP) has been applied. A new design procedure of this method was proposed considering various kinds of loading condition. However, it is not easy to apply this method for design purpose due to its complex procedures. The objective of this study is to provide a new design criteria and process for PCCP rehabilitation with FRP. Through this method, the appropriate quantities of FRP layers will be decided after examining of limit states of deteriorated PCCP. For this purpose, two deterioration conditions are assumed; fully deteriorated and partially deteriorated. Different limit states for each case are applied to decide the quantities of attached FRP. The concept of "margin of safety" is used to judge whether the design results are within the optimal ranges to satisfy all limit states.

반복하중을 받는 FRP 보강근의 부착성능에 대한 연구 (Research on the Bond Behavior of FRP Rebars subjected to Cyclic Loading)

  • 장문석;이정윤;박지선;박영환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.205-208
    • /
    • 2006
  • The use of Fiber Reinforced Polymer (FRP) bars has been gaining popularity in the civil engineering community, as an alternative material to steel reinforcement, for their noncorrosive nature and high strength-to-weight ratio. Good performance of reinforced concrete requires adequate interfacial bond between the reinforcing material and the concrete because the load applied must be transferred from the matrix to the reinforcement. Although studies on the FRP bond behavior under monotonic loading has been reported by many, there are very little work done under cyclic loading. In this paper, we present the experimental study on the bond behavior of three different types of FRP rebars subjected to four different cyclic loading conditions.

  • PDF

FRP로 보강된 콘크리트 부재의 유효부착길이 평가방법 제안 (Develop Evaluation Method of Effective Bond Length Between Concrete and Fiber Reinforcement Polymer)

  • 이원호;우현수;최기선;강대언;양원직;유영찬
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.125-128
    • /
    • 2005
  • Recently new materials, such as fiber reinforced polymer(FRP) and other composite materials are being applied in reinforcing plate or plate or prestressing cables of concrete structures. Although these new materials themselves show the excellent durability and high strength, the bond behaviour between concrete surface and FRP is not well recognized. Therefore, this paper propose a evaluation method for effective bond length between fiber reinforced polymer(FRP) and concrete. To develop the evaluation method, this paper presents a review of current evaluation methods for effective bond length. These methods are compared by single face test, expose merits and demerits. And based on them, new evaluation method was developed. Finally, the new method was compared with existing methods to verify a adequateness for evaluation of effective bond length.

  • PDF

Statistical evaluation of the monotonic models for FRP confined concrete prisms

  • Hosseinpour, Farid;Abdelnaby, Adel E.
    • Advances in concrete construction
    • /
    • 제3권3호
    • /
    • pp.161-185
    • /
    • 2015
  • FRP confining is a widely used method for seismic retrofitting of concrete columns. Several studies investigated the stress-strain behavior of FRP confined concrete prisms with square and rectangular sections both experimentally and analytically. In some studies, the monotonic stress-strain behavior of confined concrete was investigated and compressive strength models were developed. To study the reliability of these models, thorough statistical tests are required. This paper aims to investigate the reliability of the presented models using statistical tests including t-test, wilcoxon rank sum test, wilcoxon signed rank test and sign test with a level of significance of 5%. Wilk Shapiro test was also employed to evaluate the normality of the data distribution. The results were compared for different cross section and confinement types. To see the accuracy of the models when there were no significant differences between the results, the coefficient of confidence was used.

On the FE Modeling of FRP-Retrofitted Beam-Column Subassemblies

  • Ronagh, H.R.;Baji, H.
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권2호
    • /
    • pp.141-155
    • /
    • 2014
  • The use of fiber reinforced polymer (FRP) composites in strengthening reinforced concrete beam-column subassemblies has been scrutinised both experimentally and numerically in recent years. While a multitude of numerical models are available, and many match the experimental results reasonably well, there are not many studies that have looked at the efficiency of different finite elements in a comparative way in order to clearly identify the best practice when it comes to modelling FRP for strengthening. The present study aims at investigating this within the context of FRP retrofitted reinforced concrete beam-column subassemblies. Two programs are used side by side; ANSYS and VecTor2. Results of the finite element modeling using these two programs are compared with a recent experimental study. Different failure and yield criteria along with different element types are implemented and a useful technique, which can reduce the number of elements considerably, is successfully employed for modeling planar structures subjected to in-plane loading in ANSYS. Comparison of the results shows that there is good agreement between ANSYS and VecTor2 results in monotonic loading. However, unlike VecTor2 program, implicit version of ANSYS program is not able to properly model the cyclic behavior of the modeled subassemblies. The paper will be useful to those who wish to study FRP strengthening applications numerically as it provides an insight into the choice of the elements and the methods of modeling to achieve desired accuracy and numerical stability, a matter not so clearly explored in the past in any of the published literature.

하중기반 유한요소모델에 의한 FRP 보강 철근콘크리트 기둥의 비선형 해석 (Nonlinear Analysis of FRP Strengthened Reinforced Concrete Columns by Force-Based Finite Element Model)

  • 조창근
    • 콘크리트학회논문집
    • /
    • 제25권5호
    • /
    • pp.529-537
    • /
    • 2013
  • 이 연구의 목적은 하중기반 유한요소 정식화에 의한 FRP 보강된 철근콘크리트 보 또는 기둥 부재의 비선형 층상화의 등매개 골조 유한요소모델을 개발하는데 있다. 단면에서 콘크리트는 3축 응력-변형률 관계로 모델화하고 FRP 피복층은 2차원의 적층복합재료로 모델화하였다. 하중기반 유한요소의 요소강성행렬은 변위형상함수의 가정이 없고 하중보간함수를 갖고 있다. 횡 하중을 받는 GFRP 시트 보강된 철근콘크리트 기둥의 실험에 대해 개발된 하중기반 유한요소모델에 의한 해석을 수행하였다. 기존 강성도법의 유한요소해석과 비교하여 하중기반 유한요소해석은 전체적인 하중-변위 관계 뿐만 아니라 기둥의 소성힌지영역에서의 비선형 변형 및 손상을 보다 정확히 예측해 주었다.