• Title/Summary/Keyword: FRP concrete

Search Result 751, Processing Time 0.026 seconds

Mechanical performances of concrete beams with hybrid usage of steel and FRP tension reinforcement

  • Bui, Linh V.H.;Stitmannaithum, Boonchai;Ueda, Tamon
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.391-407
    • /
    • 2017
  • Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and especially in corrosive environments to improve the durability of concrete structures. However, FRPs have a low modulus of elasticity and a linear elastic behavior up to rupture, thus reinforced concrete (RC) components with such materials would exhibit a less ductility in comparison with steel reinforcement at the similar members. There were several studies showed the behavior of concrete beams with the hybrid combination of steel and FRP longitudinal reinforcement by adopting the experimental and numerical programs. The current study presents a numerical and analytical investigation based on the data of previous researches. Three-dimensional (3D) finite element (FE) models of beams by using ANSYS are built and investigated. In addition, this study also discusses on the design methods for hybrid FRP-steel beams in terms of ultimate moment capacity, load-deflection response, crack width, and ductility. The effects of the reinforcement ratio, concrete compressive strength, arrangement of reinforcement, and the length of FRP bars on the mechanical performance of hybrid beams are considered as a parametric study by means of FE method. The results obtained from this study are compared and verified with the experimental and numerical data of the literature. This study provides insight into the mechanical performances of hybrid FRP-steel RC beams, builds the reliable FE models which can be used to predict the structural behavior of hybrid RC beams, offers a rational design method together with an useful database to evaluate the ductility for concrete beams with the combination of FRP and steel reinforcement, and motivates the further development in the future research by applying parametric study.

Effect of curing conditions on mode-II debonding between FRP and concrete: A prediction model

  • Jiao, Pengcheng;Soleimani, Sepehr;Xu, Quan;Cai, Lulu;Wang, Yuanhong
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.635-643
    • /
    • 2017
  • The rehabilitation and strengthening of concrete structures using Fiber-Reinforced Polymer (FRP) materials have been widely investigated. As a priority issue, however, the effect of curing conditions on the bonding behavior between FRP and concrete structures is still elusive. This study aims at developing a prediction model to accurately capture the mode-II interfacial debonding between FRP strips and concrete under different curing conditions. Single shear debonding experiments were conducted on FRP-concrete samples with respect to different curing time t and temperatures T. The J-integral formulation and constrained least square minimization are carried out to calibrate the parameters, i.e., the maximum slip $\bar{s}$ and stretch factor n. The prediction model is developed based on the cohesive model and Arrhenius relationship. The experimental data are then analyzed using the proposed model to predict the debonding between FRP and concrete, i.e., the interfacial shear stress-slip relationship. A Finite Element (FE) model is developed to validate the theoretical predictions. Satisfactory agreements are obtained. The prediction model can be used to accurately capture the bonding performance of FRP-concrete structures.

Properties of Polymer-Modified Mortars Containing FPR Wastes (FRP 폐기물을 첨가한 폴리머-시멘트 모르타르의 특성)

  • 이병기;김승문;황의환;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.84-92
    • /
    • 1996
  • The flexural and compressive strengths of polymer-modified mortars containing FRP wastes were investigated. The specimens of polymer-modified mortars containing FRP mortat were perpared by using styrene-butadiene rubber(SBR) latex, ethylene-vinyl acetate(EVA) emulsion and polyacrylic ester(PAE) emulsion with various FRP-sand ratios(10, 20, 30, 40, 50wt%). The compressive and flexural strengths of polymer-mokified mortars containing FRP wastes were decreased with an increase of FRP-sand ratio. But the compressive and flexural strengths of PAE polymer-modified mortar were more improved than OPC, whereas those of SBR and EVA polymer-modified mortars containing FRP wastes were decreased than OPC.

  • PDF

An Experimental Study on Bond Characteristics of FRP Reinforcements with Various Surface-type (다양한 표면형상에 따른 FRP 보강재의 부착특성 실험연구)

  • Jung, Woo Tai;Park, Young Hwan;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.279-286
    • /
    • 2011
  • FRP (Fiber Reinforced Polymer) tendons can be used as an alternative to solve the corrosion problem of steel tendons. Material properties of FRP tendons-bond strength, transfer length, development length-must be determined in order to apply to concrete structures. First of all, in case of application for pretension concrete members with CFRP tendons, transfer length is an important characteristic. The bond of the material characteristics should be demanded clearly to apply to PSC structures prestressed with FRP tendons. This paper investigated on the bond characteristics of FRP reinforcements with various surface-type. To determine the bond characteristics of FRP materials used in place of steel reinforcement or prestressing tendon in concrete, pull-out testing suggested by CAN/CSA S806-02 was performed. A total of 40 specimens were made of concrete cube with steel strands, deformed steel bar and 6 different surface shape FRP materials like carbon or E-glass. Results of the bonding tests presented that each specimen showed various behaviors as the bond stress-slip curve and compared with the bond characteristic of CFRP tendon developed in Korea.

Effect of bond slip on the performance of FRP reinforced concrete columns under eccentric loading

  • Zhu, Chunyang;Sun, Li;Wang, Ke;Yuan, Yue;Wei, Minghai
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • Concrete reinforced with fiber reinforced polymer (FRP) bars (FRP-RC) has attracted a significant amount of research attention in the last three decades. A limited number of studies, however, have investigated the effect of bond slip on the performance of FRP-RC columns under eccentric loading. Based on previous experimental study, a finite-element model of eccentrically loaded FRP-RC columns was established in this study. The bondslip behavior was modeled by inserting spring elements between FRP bars and concrete. The improved Bertero-Popov-Eligehausen (BPE) bond slip model with the results of existing FRP-RC pullout tests was introduced. The effect of bond slip on the entire compression-bending process of FRP-RC columns was investigated parametrically. The results show that the initial stiffness of bond slip is the most sensitive parameter affecting the compression-bending performance of columns. The peak bond stress and the corresponding peak slip produce a small effect on the maximum loading capacity of columns. The bondslip softening has little effect on the compression-bending performance of columns. The sectional analysis revealed that, as the load eccentricity and the FRP bar diameter increase, the reducing effect of bond slip on the flexural capacity becomes more obvious. With regard to bond slip, the axial-force-bending-moment (P-M) interaction diagrams of columns with different FRP bar diameters show consistent trends. It can be concluded from this study that for columns reinforced with large diameter FRP bars, the flexural capacity of columns at low axial load levels will be seriously overestimated if the bond slip is not considered.

Evaluation and comparison of GRP and FRP applications on the behavior of RCCs made of NC and HSC

  • Shafieinia, Mohsen;Sajedi, Fathollah
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.495-506
    • /
    • 2019
  • This paper presents the results of axial pressure testing on reinforced concrete columns (RCCs) filled with confined normal concrete (NC) and high-strength concrete (HSC) using glass-fiber reinforced plastic pipes (GRP) casing as well as fiber reinforced polymer (FRP). This study aims to evaluate the behavior and mechanical properties of columns confined with GRP casing and FRP wrapping under pressure loads. The major parameters in the experiments were the type of concrete, the effect of GRP casing and FRP wrapping, as well as the number of FRP layers. 12 cylindrical RCCs (150*600) mm were prepared and divided into two groups, NC and HSC, and each group was divided into two parts. In each part, one column was without FRP strengthening layer, a column was wrapped with one FRP layer and another column with two FRP layers. All columns were tested under concentrated compression load. The results of the study showed that the utilization of FRP wrapping and GRP casing improved compression capacity and ductility of RCCs. The addition of one and two layers-FRP wrapping increased compression capacity in the NC group to an average of 18.5% and 26.5% and to an average of 10.2% and 24.8% in the HSC group. Meanwhile, the utilization of GRP casing increased the compression capacity of the columns by 4 times in the NC group and 3.38 times in the HSC group. The results indicated that although both FRP wrapping and GRP casing result in confinement, the GRP casing resulted in increased compression capacity and ductility of the RCCs due to higher confinement. Furthermore, the confinement effect was higher on columns made with NC.

An Experimental Study for the Compression Strength of Hybrid CFFT Pile (FRP 콘크리트 합성말뚝의 압축강도에 대한 실험적 연구)

  • Choi, Jin-Woo;Park, Joon-Seok;Nam, Jung-Hoon;An, Dong-Jun;Kang, In-Kyu;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.30-39
    • /
    • 2011
  • In this paper, we persent the results of on experimental investigations pertaining to the structural behavior of new type of concrete filled fiber reinforced plastic circular tubes (i.e., hybrid CFFT, HCFFT) which are suggested in order to mitigate the problems associated with the concrete filled steel-concrete composite tube (CFT) and the concrete filled fiber reinforced plastic tube (CFFT). It is found that when the HCFFT is used in the construction of pile foundation the HCFFT pile can transfer axial as well as flexural loads from the superstructure to the underground effectively in comparison with CFT and CFFT piles.

Failure Mode and Design Guideline for Reinforced Concrete Slab Strengthened Using Carbon FRP Grid (Carbon FRP Grid로 휨 보강한 철근콘크리트 슬래브의 파괴형태와 설계기준)

  • Park Sang-Yeol;Xian Cui
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.667-675
    • /
    • 2004
  • This paper presents the failure mode and strengthening design of reinforced concrete slab strengthened with Carbon Fiber Reinforced Polymer(CFRP) grid. Parameters involved in this experimental study are FRP grid reinforcement quantity, repair mortar thickness, the presence of anchor, and strengthening in compression. In this study, there are different failure types with increasing the CFRP grid strengthening reinforcement. On the low strengthening level, CFRP grid in repair mortar cover ruptures. On the moderate strengthening level, there is a debonding shear failure in the interface of carbon FRP grid because of the excessive shear deformation. On the high strengthening level, diagonal shear failure occurs. With the increasing of FRP grid reinforcement, the strengthening effect increased, but the ductility decreased. By limiting the strengthening level, it can be achieved to prevent shear failure which result in sudden loss in the resisting load capacity. CFRP rupture failure is desirable, because CFRP ruptured concrete slab keeps the same load capacity and ductility haying before strengthening even after failure. Finally, design guideline and procedure are given for strengthening of concrete slab with CFRP grid.

An Experimental Study on the Effective Strain of Reinforced Concrete Beams Strengthened by Fiber Reinforced Polymer (FRP로 보강된 철근콘크리트 보의 유효 변형률 예측에 대한 실험적 연구)

  • Hwang, Hyun-Bok;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.145-151
    • /
    • 2007
  • The shear failure modes of FRP strengthened concrete beams are quite different to those of the beams strengthened with steel stirrups. When the beams are externally wrapped with FRP composites, many beams fail in shear due to concrete crushing before the FRP reaches its rupture strain. In order to predict the shear strength of such beams, the effective strain of the FRP must be blown. This paper presents the results of an experimental study on the performance of reinforced concrete beams externally wrapped with FRP composites and infernally reinforced with steel stirrups. The main parameters of the tests were FRP reinforcement ratio, the type of fiber material (carbon or glass) and configuration (continues sheets or strips). The experimentally observed effective strain of the FRP was compared with the strain calculated using a proposed method.

Moment Capacity of Reinforced Concrete Members Strengthened with FRP (FRP 보강 철근콘크리트 부재의 휨모멘트)

  • Cho, Baik-Soon;Kim, Seong-Do;Back, Sung-Yong;Choi, Eun-Soo;Choi, Yong-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.315-323
    • /
    • 2010
  • Five concrete compressive stress-strain models have been analyzed to check the validity of the strength method for determining the nominal moment of strengthened members using commercially available computer language. The results show that the concrete stress-strain models do not influence on the flexural analysis. The moment of a strengthened member obtained from the flexural analysis at concrete compressive strain reaching 0.003 is well agreed with nominal moment using the strength method. The flexural analysis results show that when the steel reinforcement, FRP ratio, FRP failure strain, and concrete failure compressive strain are relatively lower, the strength method overestimates the flexural capacity of the strengthened members.