• Title/Summary/Keyword: FRP RC

Search Result 287, Processing Time 0.023 seconds

Seismic Retrofit Effect for Column of Subway Tunnel Reinforced by FRP-Ductile Material Layered Composites (FRP-연성재 적층복합체로 보강된 도시철도 개착식 터널 기둥의 내진보강효과)

  • Kim, Doo-Kie;Go, Sung-Hyuk;Kim, Jin-Yeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.85-92
    • /
    • 2010
  • Recently the earthquake occurrences in Korea are likely to increase. Therefore, the facilities such as bridges and tunnels under the unexpected earthquakes need to be enhanced. Especially most of the subways previously built before 1988 have not been seismically designed, so their seismic safety requirements are required to be inspected and/or reinforced. In this study, the seismic reinforcement using FRP-ductile material layered composites was proposed to reinforce for the subway columns. Material properties of FRP-ductile material layered composites were calculated by laboratory tests considering the laminated conditions of the composites. Numerical simulations were performed using the experimental results of the specimens and the calculated properties of the composites. Seismic performance varied according to the types of composites: ductile material, number of layers, fiber orientations.

Heat Conduction Analysis and Fire Resistance Capacity Evaluation of Reinforced Concrete Beams Strengthened by FRP (FRP로 보강된 철근콘크리트보의 열전도해석 및 내화성능 평가)

  • Lim, Jong-Wook;Park, Jong-Tae;Kim, Jung-Woo;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • The object of this paper is to find the characteristics of fire proof materials through an analytical method and to suggest a proper approach for fire-proof design of reinforced concrete beam strengthened with fiber reinforced polymer (FRP). Heating tests for fire-proof materials were conducted and the thermal conductivities and specific heats of them were simulated through finite element analyses. In addition, a finite element analysis on the beam specimen strengthened with FRP under high temperature, which was conducted by previous researchers, was performed and the analytical result was compared with test result. And then the compatibility of the analytical approach was evaluated. Finally, the heat resistance characteristic of RC beam strengthened with FRP was analyzed by the proposed analytical method and the strength decrease of the beam due to the high temperature was evaluated. From the comparison with analytical and test result, it was found that the heat transfer from outside to inside through the fire-proof materials can be suitably simulated by using the proposed analytical approach.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

Structural Performance of Reinforced Concrete Beams Strengthened with Sprayed Fiber Reinforced Polymers (Sprayed FRP로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Lee, Kang-Seok;Son, Young-Seon;Lee, Moon-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.421-431
    • /
    • 2007
  • The main purpose of this study is to develop a sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing one of the carbon or glass chopped fibers and one of the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In order to investigate the material property of the sprayed FRP, this study carried out tensile tests of the material specimens, which were changed with the combinations of various variables including the length of chopped fiber and the mixture ratio of chopped fiber and resin. These variables were set to have the equal material strength, compared with that of one layer of the FRP sheet. As a result, the optimal length of glass and carbon chopped fibers was fumed out to be 38 mm, and the optimal mixture ratio between chopped fiber and resin was also turned out to be 1 : 2 from each variable. And also, the thickness of the sprayed FRP to have the equal strength to one layer of the FRP sheet was finally calculated. In is study, a series of experiments were carried out to evaluate the strengthening effects of flexural beams, shear beams and damaged beams strengthened with the sprayed FRP method, respectively. The results revealed that the strengthening effects of the flexural and shear specimens were reasonably similar to those of the FRP sheet, and the developed Sprayed FRP technique is able to be used as a strengthening scheme of existing RC building.

A State-of-the-Art Review on Debonding Failures of FRP Laminates Externally Adhered to Concrete

  • Kang, Thomas H.K.;Howell, Joe;Kim, Sang-Hee;Lee, Dong-Joo
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.123-134
    • /
    • 2012
  • There is significant concern in the engineering community regarding the safety and effectiveness of fiber-reinforced polymer (FRP) strengthening of RC structures because of the potential for brittle debonding failures. In this paper, previous research programs conducted by other researchers were reviewed in terms of the debonding failure of FRP laminates externally attached to concrete. This review article also discusses the influences on bond strength and failure modes as well as the existing experimental research and developed equations. Based on the review, several important conclusions were re-emphasized, including the finding that the bond transfer strength is proportional to the concrete compressive strength; that there is a certain bond development length that has to be exceeded; and that thinner adhesive layers in fact lower the chances of a concrete-adhesive interface failure. It is also found that there exist uncertainty and inaccuracy in the available models when compared with the experimental data and inconsistency among the models. This demonstrates the need for continuing research and compilation of data on the topic of FRP's bond strength.

Finite element modeling methodologies for FRP strengthened RC members

  • Park, Sangdon;Aboutaha, Riyad
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.389-409
    • /
    • 2005
  • The Finite Element Analysis (FEA) is evidently a powerful tool for the analysis of structural concrete having nonlinearity and brittle failure properties. However, the result of FEA of structural concrete is sensitive to two modeling factors: the shear transfer coefficient (STC) for an open concrete crack and force convergence tolerance value (CONVTOL). Very limited work has been done to find the optimal FE Modeling (FEM) methodologies for structural concrete members strengthened with externally bonded FRP sheets. A total of 22 experimental deep beams with or without FRP flexure or/and shear strengthening systems are analyzed by nonlinear FEA using ANAYS program. For each experimental beams, an FE model with a total of 16 cases of modeling factor combinations are developed and analyzed to find the optimal FEM methodology. Two elements the SHELL63 and SOLID46 representing the material properties of FRP laminate are investigated and compared. The results of this research suggest that the optimal combination of modeling factor is STC of 0.25 and CONVTOL of 0.2. A SOLID 46 element representing the FRP strengthening system leads to better results than a SHELL 63 element does.

Novel NSM configuration for RC column strengthening-A numerical study

  • Gurunandan, M.;Raghavendra, T.
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.437-445
    • /
    • 2021
  • Retrofitting of structures has gained importance over the recent years. Particularly, Reinforced Cement Concrete (RCC) column strengthening has become a challenge to the structural engineers, owing to the risks and complexities involved in it. There are several methods of RCC column strengthening viz. RCC jacketing, steel jacketing and Fiber Reinforced Polymer (FRP) wrapping etc., FRP wrapping is the most promising alternative when compared to the others. The large research database shows FRP wrapping, through lateral confinement, improves the axial load carrying capacity of the columns under concentric loading. However, its confining efficiency reduces under eccentric loading. Hence a relative newer technique called Near Surface Mounting (NSM), in which Carbon FRP (CFRP) strips are epoxy grouted to the precut grooves in the cover concrete of the columns, has been thrust domain of research. NSM technique strengthens the column nominally under concentric load case while significantly under eccentric case. A novel configuration of NSM in which the vertical NSM (VNSM) strips are being connected by horizontal NSM (HNSM) strips was numerically investigated under both concentric and eccentric loading. It was found that the configuration with 6 HNSM strips performed better under eccentric loading than under concentric loading, while the configuration with 3 HNSM strips performed better under concentric loading than under eccentric loading. Hence an optimum of 4 HNSM strips is recommended as strengthening measure for the given column specifications. It was also found that Aluminum alloy cannot be used instead of CFRP in NSM applications owing to its lower mechanical properties.

Mechanical Performance Evaluation of RC Beams with FRP Hybrid Bars under Cyclic Loads (FRP 하이브리드 보강근을 가지는 RC보의 반복하중에 대한 역학적 성능 평가)

  • Hwang, Chul-Sung;Park, Jae-Sung;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • In the present work, a mechanical performances under cyclic loading in RC (Reinforced Concrete) beams with normal steel and FRPH (Fiber Reinforced Plastic Hybrid) bar are investigated. For the work, RC beam members with $200{\times}200{\times}2175mm$ of geometry and 24 Mpa of design strength are prepared, and 4-point-bending tests are performed for evaluation of cracking, yielding, and ultimate loads. Through static loading test, 48.9kN and 36.0 kN of yielding loads are measured for normal RC and FRPH beam, respectively. They have almost same ultimate load of 50.0 kN. Typical tension hardening behavior is observed in FRPH beam, which is caused by the behavior of FRPH bar with tension hardening. In cyclic loading conditions, FRPH beam has more smaller crack width and scattered crack pattern, and it shows more elastic recovery than normal RC beam. The energy dissipation ratio in FRPH beam is 0.83, which is greater than 0.62 in normal RC beam and it shows more effective resistance to cyclic loadings.

Case study on the external prestressing method strengthened carbon fiber reinforced plates. (탄소섬유 보강판 전용 정착장치를 이용한 외부 프리스트레싱 보강공법 사례연구)

  • 정원용;임공묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1003-1006
    • /
    • 2003
  • In recent years, FRP plates have been studied for flexural reinforcement of RC structures due to easy installation and good Quality control. This study presents experimental field test results for the effectiveness of flexural reinforcement of the RC slab using external prestressing with thin CFRP strips made by the pultrusion process. It was demonstrated that flexural strength was considerably increased with relatively easy installation when compared to the other methods used for the composite reinforcement.

  • PDF

Freezing-Thawing Resistance of Fiber Reinforced Polymers in Strengthening RC Members (구조보강용 FRP 복합체의 동결용해 저항성 평가 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.182-189
    • /
    • 2010
  • The strengthening performance of FRPs(Fiber Reinforced Polymers) is directly affected by the environmental conditions such as freezing-thawing and moisture because FRPs are usually bonded on the concrete surface. It is, therefore, strongly required to evaluate a durability of bond between FRPs and concrete as well as FRP materials itself. The freezing-thawing resistance of FRPs is evaluated in this study with the variables of freezing-thawing conditions, types of FRP and freezing-thawing cycles. From the test results, it is found that tensile strength and pull-off strength of CFRP are not affected by the freezing-thawing. On the other hands, those of GFRP show a little degradation because of continuous water immersion during thawing process. But, cautions are needed on the bond durability between FRPs and concrete in case of continuous water supplying from adjacent to the concrete.