• Title/Summary/Keyword: FRP RC

Search Result 287, Processing Time 0.031 seconds

Premature failure Criteria of RC Beams Strengthened with FRP II (FRP보강 RC보의 조기파괴기준 II)

  • Kim, Tae-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.141-144
    • /
    • 2005
  • Rip-off failure and Debonding failure were commonly reported premature failure modes. The main reasons of premature failure in RC beams bonded with FRP were strengthening length and the reinforcement ratio. in this study, On the basis of premature failure mechanism in RC beams bonded with FRP, premature failure criteria were proposed. Also It was verified that Rip-off failure and Debonding failure occured according to premature failure criteria

  • PDF

A Study of the Shear Design Codes of FRP RC Beam without Shear Reinforcements (전단보강이 없는 FRP RC 보의 전단설계기준에 대한 고찰)

  • Shin, Sung-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.481-482
    • /
    • 2010
  • There is disagreement among researchers in many areas of FRP RC design code except flexural. So a new efficient and reliable shear strength equation which show a high accuracy and a consistent variation in predicting failure modes and shear strength was proposed.

  • PDF

Prediction Model Using Upper Bound Theorem of Shear Strength for RC Beams Strengthened by FRP (상한계 이론을 이용한 FRP로 보강된 RC보의 전단강도 예측 모델)

  • 홍성걸;문선혜
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.908-911
    • /
    • 2003
  • This study was performed to verify the effect of reinforcement of RC Beams strengthened($90^{\circ}$ strip type) by FRP(CFRP) and Predited the shear strength of them using the upper bound theorem. The prediction model was confirmed with the result of the FEM analysis. The analyzed result showed thar shear-damaged RC beams by strengthened by FRP was improved their shear capacity.

  • PDF

Damage characterization of beam-column joints reinforced with GFRP under reversed cyclic loading

  • Said, A.M.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.443-455
    • /
    • 2009
  • The use of fiber reinforced polymer (FRP) reinforcement in concrete structures has been on the rise due to its advantages over conventional steel reinforcement such as corrosion. Reinforcing steel corrosion has been the primary cause of deterioration of reinforced concrete (RC) structures, resulting in tremendous annual repair costs. One application of FRP reinforcement to be further explored is its use in RC frames. Nonetheless, due to FRP's inherently elastic behavior, FRP-reinforced (FRP-RC) members exhibit low ductility and energy dissipation as well as different damage mechanisms. Furthermore, current design standards for FRP-RC structures do not address seismic design in which the beam-column joint is a key issue. During an earthquake, the safety of beam-column joints is essential to the whole structure integrity. Thus, research is needed to gain better understanding of the behavior of FRP-RC structures and their damage mechanisms under seismic loading. In this study, two full-scale beam-column joint specimens reinforced with steel and GFRP configurations were tested under quasi-static loading. The control steel-reinforced specimen was detailed according to current design code provisions. The GFRP-RC specimen was detailed in a similar scheme. The damage in the two specimens is characterized to compare their performance under simulated seismic loading.

Behaviors of RC Beams Repaired with FRP-Rod by Use of Anchoring Pin (정착 앵커를 이용한 FRP-Rod 보수 RC 보의 거동)

  • Kim, Chung Ho;Jang, Hee Suk;Ko, Sin Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.151-157
    • /
    • 2008
  • It is difficult for existing beams to ensure the sufficient embedding depth due to constructional cause. Owing to these problems, currently FRP-Rod embedding repair method run parallel with a section increasing method in many case. In this study, anchor pin was adopted to solving the problems of the sliding of FRP-Rod and the unified behaviors of the repaired beam without increasing the section. In the experiments, split failure of covering concrete and slippage of the FRP-Rod were not occurred. it was confirmed that FRP-Rod shown the integrate behaviors with RC beam till the repaired beams destroyed.

Experimental Study for Shear Behavior of RC Beam Strengthened with Channel-type FRP Beam (채널형 FRP빔으로 보강된 RC보의 전단거동에 관한 실험적 연구)

  • Hong, Ki-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2009
  • A recent and promising method for shear strengthening of reinforced concrete(RC) members is the use of near surface mounted(NSM) fiber reinforced polymer(FRP) reinforcement. In the NSM method, the reinforcement is embedded in grooves cut onto the surface of the member to be strengthened and filled with an appropriate binding agent such as epoxy paste or cement grout. This paper illustrates a research program on shear strengthening of RC beams with NSM channel-type FRP beams which is developed in this study. The objective of this study is to clarify the role of channel-type FRP beam embedded to the beam web for shear strengthening of reinforced concrete beams. Included in the study are effectiveness in terms of spacing and angle of channel-type FRP beams, strengthening method, and shear span ratio. the study also aims to understand the additional shear capacity due to glass fiber reinforced polymer beams and carbon reinforced polymer beams. And anther objective is to study the failure modes, shear strengthening effect on ultimate force and load deflection behavior of RC beams embedded with channel-type FRP beams on the shear region of the beams.

The effects of different FRP/concrete bond-slip laws on the 3D nonlinear FE modeling of retrofitted RC beams - A sensitivity analysis

  • Lezgy-Nazargah, M.;Dezhangah, M.;Sepehrinia, M.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.347-360
    • /
    • 2018
  • The aim of this paper is to evaluate the accuracy and reliability of the available bond-slip laws which are being used for the numerical modeling of Fiber Reinforced Polymer (FRP)/concrete interfaces. For this purpose, a set of Reinforced Concrete (RC) beams retrofitted with external FRP were modeled using the 3D nonlinear Finite Element (FE) approach. All considered RC beams have been previously tested and the corresponding experimental data are available in the literature. The failure modes of these beams are concrete crushing, steel yielding and FRP debonding. Through comparison of the numerical and experimental results, the effectiveness of each FRP/concrete bond-slip model for the prediction of the structural behavior of externally retrofitted RC beams is assessed. The sensitivity of the numerical results against different modeling considerations of the concrete constitutive behavior and bond-slip laws has also been evaluated. The results show that the maximum allowable stress of FRP/concrete interface has an important role in the accurate prediction of the FRP debonding failure.

Experimental and Analytical Study on the Fracture Strength of RC Beams Strengthened for Flexure with GFRP Involving the Debonding of FRP Reinforcement (보강재 박리에 의한 GFRP 휨 보강 RC보의 파괴강도에 관한 실험 및 해석적 연구)

  • Lee, Jong-Han;Kwon, Hyuck Bae;Kang, Su Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.39-48
    • /
    • 2015
  • Reinforced concrete (RC) structures strengthened with FRP materials would cause the loss of the reinforcing effect and the sudden failure of the structure due to the debonding of FRP. The debonding fracture strength of the FRP-strengthened concrete structures has been evaluated using the same strength method as applied in RC structures based on the debonding strain of FRP. However, the values of the FRP debonding strain are different according to design guidelines. Thus, this study carried out an experimental study on RC beams reinforced with GFRP and evaluated the debonding fracture strength of the strengthened beams from each design guideline. Since the debonding failure occurs prior to reaching the ultimate value of concrete compressive strain, this study accounts for the nonlinear stress distribution of concrete. This study also proposed equations that can evaluate the debonding strength of GFRP-strengthened RC beams with similar safety to the ultimate flexural strength of non-strengthened RC beams.

Tests and Design Provisions for Reinforced-Concrete Beams Strengthened in Shear Using FRP Sheets and Strips

  • Mofidi, Amir;Chaallal, Omar
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.117-128
    • /
    • 2014
  • Numerous investigations of RC beams strengthened in shear with externally-bonded (EB) fibre-reinforced polymer (FRP) sheets, plates and strips have been successfully conducted in recent years. These valuable studies have highlighted a number of influencing parameters that are not captured by the design guidelines. The objective of this study was: (1) to highlight experimentally and analytically the influential parameters on the shear contribution of FRP to RC beams strengthened in shear using EB FRP sheets and strips; and (2) to develop a set of transparent, coherent, and evolutionary design equations to calculate the shear resistance of RC beams strengthened in shear. In the experimental part of this study, 12 tests were performed on 4,520-mm-long T-beams. The specimens were strengthened in shear using carbon FRP (CFRP) strips and sheets. The test variables were: (1) the presence or absence of internal transverse-steel reinforcement; (2) use of FRP sheets versus FRP strips; and (3) the axial rigidity of the EB FRP reinforcement. In the analytical part of this study, new design equations were proposed to consider the effect of transverse-steel in addition to other influential parameters on the shear contribution of FRP. The accuracy of the proposed equations has been verified in this study by predicting the FRP shear contribution of experimentally tested RC beams.

Flexural Strengthening Effects of RC Beam Reinforced with Pre-stressing Plate (긴장을 가한 보강 플레이트로 보강된 RC 보의 휨보강 효과)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.171-178
    • /
    • 2019
  • Fiber-reinforced polymer (FRP) composites have proved to be reliable as strengthening materials. Most of existing studies used single types of FRP composites. Therefore, in this experimental study, carbon FRP sheet, aramid FRP sheet, and hybrid FRP plate including glass fibers were fabricated, and the effect of pre-stressed FRP composites on flexural strengthening of reinforced concrete (RC) beams was investigated. In total, eight RC beam specimens were fabricated, including one control beam (specimen N) without FRP composites and seven FRP-strengthened beams. The main parameters were type of FRP composite, the number of anchors used for pre-stressing, and thickness of FRP plates. As a result, the beam strengthened with pre-stressed FRP plate showed superior performance to the non-strengthened one in terms of initial strength, strength and stiffness at yielding, and ultimate strength. As the number of anchors and thickness of FRP plate (i.e., amount of FRP plates) increased, the strengthening effect increased as well. When hybrid FRP plates were pre-stressed, the strengthening effect was higher in comparison with pre-stressed single type FRP plate.