• Title/Summary/Keyword: FRP 복합재료

Search Result 199, Processing Time 0.038 seconds

Experiment on Flexural Analysis of RC Beams Strengthened with Composite Material Panel (복합재료 패널로 보강된 철근 콘크리트 보의 휨 실험)

  • Kim, Jin-Man;Jung, Mi-Roo;Lee, Jae-Hong;Yoon, Kwang-Sup
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.117-126
    • /
    • 2010
  • Experiment on flexural analysis of RC beams strengthened with composite material panel is presented. Recently, the strengthening of reinforced concrete structures using advanced fiber reinforced plastic (FRP) composites, and in particular the behavior of FRP-reinforced concrete structure is topic that has become very popular because of good corrosion resistance and easy for site handling due to their light weight. In this study, an efficient computational analysis using ABAQUS to predict the ultimate moment capacity of reinforced concrete beams strengthened with FRP is presented. Test parameters in this study are the shape of fiber arrangement (LT, DB, DBT) and the number of carbon fiber sheets (2ply, 3ply). When comparing with results of the analytical model, results of the experiments show similar values. Furthermore, reinforced concrete beam with FRP obtains improved effects for ultimate strength.

  • PDF

Study on mechanical behavioral characteristics of FRP-concrete composit member considering interface element between FRP and concrete (계면특성을 고려한 FRP와 콘크리트 복합부재의 역학적 거동특성 분석 연구)

  • Lee, Gyu-Phil;Park, Young-Taek;Hwang, Jae-Hong;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.595-606
    • /
    • 2012
  • Utilization of fiber reinforced polymer(FRP) material has been increased to solve construction material problems such as corrosion, etc. However, there are still many problems in using a linear-shaped FRP material for a tunnel structure with curved section. In this study, the loading tests were performed on the curved FRP-concrete composite material to evaluate its behavior as tunnel support. These tests were based on the result from preliminary numerical analysis on FRP-concrete composite material. Also, additional numerical analysis considering interface characteristics between FRP and cement-concrete was conducted to compare the result of loading test on FRP-concrete composite material. From the results of the loading test and numerical analysis, the analysis method suggested from this study is reasonable to evaluate the mechanical behavior of FRP-concrete composite material.

A Study on the Characteristics of FRP Composites and Structural Adhesives (FRP선체 복합재료와 구조용 접착제의 실험적 연구)

  • Choi, Han-Kyu
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.26
    • /
    • pp.4-23
    • /
    • 2009
  • 선체용 복합재료 및 구조용 접착제와 신공법인 진공 성형법으로 건조한 레저선박에 강화플라스틱 구조기준을 그대로 적용하기에는 무리가 있으며, 따라서 복합재료, 수지, 접착제 및 진공 성형법 등 현장조사를 토대로 복합소재 및 접착제를 이용한 시험편을 제작하여 복합재료의 기계적 특성, 구조용 접착제에 대한 신뢰성 평가 및 국내외 기준 비교 검토를 통한 국내 실정에 적합한 검사기준을 제안하고자 한다.

  • PDF

Evaluation and Application of T-Ray Nondestructive Characterization of FRP Composite Materials (FRP 복합재료의 T-Ray 비파괴특성 평가 및 적용)

  • Im, Kwang-Hee;Hsu, David K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.429-436
    • /
    • 2010
  • Recently, (terahertz ray) applications have emerged as one of the most promising new powerful nondestructive evaluation (NDE) techniques. In this study, a new T-ray time-domain spectroscopy system was utilized for detecting and evaluating layup effect and flaw in FRP composite laminates. Extensive experimental measurements in reflection and thru-transmission modes were made to map out the T-ray images. Especially this was demonstrated in thick GFRP laminates containing double saw slots. In carbon composites the penetration of terahertz waves is limited to some degree and the detection of flaws is strongly affected by the angle between the electric field(E-field) vector of the terahertz waves and the intervening fiber directions. The artificial defects investigated by terahertz waves were bonded foreign material, simulated disbond and delamination and mechanical impact damage. The effectiveness and limitations of terahertz radiation for the NDE of composites are discussed.

Strength Assessment of 8m-class High-Speed Planing Leisure Boat (8m급 고속 활주선형 레저보트의 구조강도 평가)

  • Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.418-423
    • /
    • 2018
  • Recently, research and development of high-value leisure vessels has been carried out in Korea to revitalize the marine leisure industry and tap into the global maritime leisure market. FRP composite materials, which have excellent physical properties and are available for the manufacture of light hulls, are used widely. One of the most important design technologies is to secure structural safety of leisure vessels made from FRP composite materials. In this study, the structural strength was assessed for the design of an 8-meter high-speed planing leisure boat made from FRP composite materials. The design loads to verify the structural safety were calculated according to the rules for the classification of high speed light craft (KR, 2015), and structural analysis was conducted using a finite element model composed of an isotropic shell element, which has equivalent bending rigidity with the FRP sandwich panel. The analysis results were compared with the results of the strength test for fabricated specimens, and all internal structural components are sufficiently satisfied with the structural strength.

A Study on the Development of the Next Generation Composite Materials(Hybrid Composites with Non-Woven Tissue) (차세대 복합재료의 개발에 관한 연구(부직포 삽입형 하이브리드 복합재료))

  • ;Hiroshi Noguchi
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.195-198
    • /
    • 2001
  • To improve the properties of FRP composite materials, the hybrid prepreg with non-woven tissue (NWT) is developed. The hybrid prepreg consists of undirectional prepreg and NWT prepreg. The NWT prepreg is made by compounding the NWT and polymer resin, which is similar to the production method of FRP prepreg. The NWT has short fibers which are discretely distributed with in-plane random orientation. The stiffness and strength of NWT composites are lower than those of continuously fibrous composites. The strengthening technique and fabricating technique for the hybrid prepreg are described in this work. The mechanical characteristics of hybrid composites with NWT are discussed and compared with those of the FRP composites.

  • PDF

An Investigation on the Nonlinear Shear Behavior of FRP Composites Considering Temperature Variation and Fabricating Parameters (FRP 복합재료의 온도변화 및 제작인자별 비선형 전단거동 조사)

  • Jung, Woo-Young;Hwang, Jin-Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.833-841
    • /
    • 2013
  • In the case of composite material, a variety of characteristics were expressed depending on the materials that were composed of. In this study, the materials showing non-linear shear behavior were investigated among FRP composite. Each specimen was designed and analyzed according to ASTM D4255 method: regulations on the 2-rail. The dependent variables included in this experiment were a variety of fiber, fiber volume ratio, fiber array direction, temperature, material homogeneity. For determination of characteristics based on the fiber array, fiber array direction of 0, 30, 45, and 60 degrees were selected for test specimen. Temperature of 25, 40, 60, and $80^{\circ}C$ were considered for investigation of FRP materials'shear behavior based on the external temperature. Nonlinear shear behavior was observed throughout the FRP composite material in this study. Also, using vinyl ester resins, high fiber volume ratio, and fiber array direction of 45 degree appeared to show the most prominent nonlinear shear behavior. As for the findings related to the temperature change, non-linear behavior was decreased as the external temperature increased. For factory manufactured product, non-linear behavior was relatively at parity in comparison to the behavior found in the hand lay-up FRP composite specimen.

Vibration Analysis of Composite Laminated Plates Considered in Material-Nonlinearity (재료비선형을 고려한 복합적층판의 진동해석)

  • Seok, Keun-Yung;Kang, Joo-Won;Shin, Young-Shik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.45-52
    • /
    • 2006
  • FRP laminated plates have strong material-nonlinearity. Through vibration Analysis of FRP laminated plates, the result of nonlinearity analysis is compared with the result of linearity analysis according to stacking angle and squency. This study is a fundamental study about displacement in nonlinearity dynamic behavior of FRP laminated plates.

  • PDF

Technical Review on the Design Methods and Guidelines for fiber Reinforced Composites (건축토목용 복합재료의 국내.외 설계기준 분석)

  • Han, Bog-Kyu;Hong, Geon-Ho;Kim, Ki-Soo
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.39-43
    • /
    • 2006
  • A decade ago, the technology of strengthening structures using FRP composites was primitive, with very few publications. Nowadays, the potential growth of research is achieved to the wide recognition of the importance of this new technology. In fact, significant practical applications have been preceded and the development of design methods have been achieved. However, the specific design methods for each applications are still lack of design skills in spite of the wide applications of FRP composites in the construction industry. The purpose of this paper is to report the development of design methods for FRP-strengthened structures by technical review design methods and guidelines of fiber reinforced composites.

An Experimental Study of Fatigue and Static Behavior for Composite Deck Member (복합재료 바닥판 부재의 정적 및 피로거동에 관한 시험적 연구)

  • Kim, Doo-Hwan;Kim, Young-Chan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.15-21
    • /
    • 2011
  • It is required to accumulate experimental datum that make the theories easy to general technicians in order to use composite material widely on construction field. Therefore, we intend to present base technologies that evaluate static and fatigue performance according to the FRP deck section and offer the basis datum for FRP deck analyses and the design standards. As results of static tests, it can be shown that specimen with fabric direction has higher rigidity than that with normal to fabric direction and convergence for the datum. Due to this reason, it has more stable behavior by structural characteristics of matrix arrangement during destruction. For the fatigue tests, we found that by increasing the number of test repetition, test specimen with fabric direction had an crack just before the destruction, and the contact surface was detached.