• Title/Summary/Keyword: FRP 바닥판

Search Result 53, Processing Time 0.024 seconds

Structural Behavior on the Externally Strengthened Bridge Deck with Glass Fiber Reinforced Polymer (유리섬유보강재로 외부부착 보강된 교량 바닥판의 구조거동)

  • 오홍섭;심종성;최장환
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.922-933
    • /
    • 2002
  • Since the deterioration of concrete bridge decks affect durability, safety, and function, structural rehabilitation of damaged concrete deck that was strengthened with Fiber Reinforced Polymer(FRP) is increasing the latest. But recent studies on the strengthened structures are focused on the static behavior, however only a few studies on the fatigue behavior are performed. In this study, static and fatigue behavior of strengthened deck were peformed on 11 deck specimens strengthened with sheet typed Glass Fiber Reinforced Polymer(GFRP) that were reinforced by two different strengthening methods for the static test. A amount of strengthening material in the each direction such as transverse and longitudinal was adopted experimental variables for the static test and also the stress level of the static maximum load are adopted for the fatigue test. By the results of the experimental study, with respect to the strengthened decks, the resistance effect of crack propagation and effect of stress distribution are improved. In addition, the rate of variation of compliance decreased.

Structural Behavior of FRP-Concrete Composite Bridge Deck for Rolling Fatigue (윤하중 피로실험을 통한 FRP-콘크리트 합성바닥판의 구조 거동 분석)

  • Kim, Sung-Tae;Cho, Keun-Hee;Chin, Won-Jong;Cho, Jeong-Rae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.103-106
    • /
    • 2005
  • Bridge deck is the element presenting the largest damage potentiality among the major bridge structural members. In the previous study, a new-type of FRP-concrete composite bridge deck system was proposed and its static performance was experimentally verified, This study aim at investigation of fatigue behavior such as failure mechanism through rolling fatigue test.

  • PDF

Optimal Design of FRP Bridge Decks (FRP 바닥판의 최적설계)

  • Park, Jae-Gyun;Ahn, Il-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.108-114
    • /
    • 2008
  • Although FRP is relatively new material for constructional use, there are several commercial GFRP bridge decks available today. In this paper we first set variables which decide the design of a GFRP deck based on commercial products. Under the assumption of linear elastic behavior under DB24 load, all the conditions of stability and serviceability are considered. We seek the best solution which minimizes the cross section area using genetic algorithm. The optimal solution shows that the shape is close to the ASSET deck with larger angle of the web and smaller area.

Analysis of Probability and Extended Life Cycle of Strengthened Bridge Deck (성능향상된 교량 바닥판의 확률론적 해석 및 수명연장 분석)

  • Sim, Jong-Sung;Oh, Hong-Seob;Choi, Jang-Whan;Kim, Eon-Kyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.635-642
    • /
    • 2003
  • Although the strengthening effect of deteriorated concrete bridge decks has been studied by various authors, most researches are focused on the experimental works on the pulsating loading in laboratory in spite of deterioration of deck caused by moving vehicle loads. In this research, a theoretical live load model that was proposed to reflect an effect of moving vehicle loads is formulated from a statistical approach on the measurement of real traffic loads for various time periodsin Korea. Fatigue life and strengthening effect of strengthened bridge decks strengthened with either Carbon Fiber Sheet or Grid typed Carbon Fiber Polymer Plastic by the probabilistic and the reliability analyses are assessed. As a results, secondary bridge deck (DB18) strengthened with FRP ensures a sufficient fatigue resistance against the increased traffic loads as well as load carrying capacity in life cycle.

System Identification for Analysis Model Upgrading of FRP Decks (FRP 바닥판의 해석모델개선을 위한 System Identification 기법)

  • Seo, Hyeong-Yeol;Kim, Doo-Kie;Kim, Dong-Hyawn;Cui, Jintao;Lee, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.588-593
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF

Performance Verification of FRP Decks by Connection between Bridge Rail and FRP Decks (방호울타리 연결방법에 의한 FRP바닥판의 거동특성)

  • Lee, Young-Ho;Jeong, Jin-Woo;Youm, Kwang-Soo;Park, Ki-Tae;Hwang, Yoon-Koog
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.134-137
    • /
    • 2006
  • In this paper, performance verification of connection between bridge rail and FRP decks are performed by static test. Also, the effect of flexible bridge rail failure to behavior of FRP deck are examined. Commercial products of flexible bridge rail are applied to test specimen, and 6 types of FRP deck-to-bridge rail connection system are considered. By the test results, 6 types of connection system by the connection method have similar structural capacity and have enough safety margin. Therefore, it is determined that 6 kinds of bridge rail considered in this study can be applied to bridge effectively by the cases of bridge field condition.

  • PDF

A Study on Fatigue Performance Evaluation of Stress Concentration of Plate Members Using Composite Material (복합재료 사용 바닥판 부재의 응력집중부에 대한 피로성능 평가에 관한 연구)

  • Park, Tai-Young;Park, Joon-Seok;Kim, Doo-Hwan
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.529-532
    • /
    • 2008
  • Recently the compound material has interested in using the structural material as the bridge member assembly. It is the lighter material against existing construction material and has excellent durability and economy. The existing floor of bridge has its short period to repair and replace compared to other parts of the bridge with the pavement and the shoe. These deteriorations of usage and safety by aging and corrosion are needed frequent maintenance. The use of compound material as a structural member suggests solve these problems. So this thesis evaluates the static and the fatigue performance for whether there are fiber lamination direction and stress concentration section of FRP floor plate, the compound material.

  • PDF

A Parametric Study for Bending Behavior of Perfobond FRP-Concrete Composite Beam (퍼포본드 FRP-콘크리트 합성보의 휨거동에 관한 매개변수 연구)

  • Yoo, Seung-Woon;Kook, Moo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2396-2402
    • /
    • 2012
  • In recent years, the use of hybrid fiber reinforced polymer(FRP)-concrete members with a dual purpose of both formwork and reinforcement, has been considered in some structures and has been applied in a small number of bridge decks. Numerical simulations of the beam failure tests were performed using nonlinear finite element program and a parametric study was performed with variables of perfobond shape. The ultimate strength was increased with perfobond shape because of dowel action. It was showed a good performance in case of approximately perforate diameter 25~35mm in this case.

Static Behavio in Weak Axis of FRP Bridge Deck Filled With a Foam (폼 충전 FRP 바닥판의 약축방향 정적거동 특성)

  • Zi Goang-Seup;Kim Byeong-Min;Hwang Yoon-Koog;Lee Young-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.906-913
    • /
    • 2006
  • The failure mechanism of a hollow bridge deck which is made of glass fiber reinforced polymer(GFRP) is investigated using both experiments and analysis. While the load-displacement behavior of the deck in the transverse direction shows a strong nonlinearity even in its initial response with relatively small magnitude of loads. In order to imporve the structural behavior of the deck in the transverse direction, we suggested that the empty space of the bridge deck is filled with a foam and investigated experimentally the static behavior of the orthotropic bridge deck which is made from GFRP and polyurethane foam. It is found that although the elastic modulus of the foam compared to that of the GFRP is about the order of $10^{-3}$, the structural behaviors in the weak axis such as nominal strength, stiffness, etc. are greatly improved. Owing to the low mass density of the foam used in this study, the bridge deck is still light enough with the improved structural properties.

  • PDF

Optimal Stiffness Estimation of Composite Decks Model using System Identification (System Identification 기법을 이용한 복합소재 바닥판 해석모델의 최적강성추정)

  • Seo, Hyeong-Yeol;Kim, Doo-Kie;Kim, Dong-Hyawn;Cui, Jintao;Park, Ki-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.565-570
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF