• Title/Summary/Keyword: FRICTION TIME

Search Result 994, Processing Time 0.022 seconds

Motion of rigid unsymmetric bodies and coefficient of friction by earthquake excitations

  • Zadnik, Branko
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.257-267
    • /
    • 1994
  • Motions of an unsymmetric rigid body on a rigid floor subjected to earthquake excitations with special attention to coefficient of friction are investigated. Motions of a body in a plane are classified (Ishiyama 1980) into six types, i.e. (1) rest, (2) slide, (3) rotation, (4) slide rotation, (5) translation jump, (6) rotation jump. Based upon the theoretical and experimental research work special attention is paid to the sliding of a body. The equations of motions and the behavior of coefficient of friction in the time of floor excitation are studied. One of the features of this investigation is the introduction and estimation of the "time dependent" coefficient of friction. It has been established that the constant kinetic coefficient of friction $${\mu}(kin){\sim_\sim}0.8{\mu}(stat)$$ does not give the appropriate results. The method for the estimation of the friction coefficient variation during the time is given.

A Study on Mechanical Properties According to the Depth of Notch in SM20C Friction Welding Zone (SM20C 마찰용접부(摩擦鎔接部)의 노치 깊이에 따른 기계적(機械的) 성질(性質) 연구(硏究))

  • Lee, Se-Gyoung;Chung, Jun-Mo;Park, Chun-Bong;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • The present study examined the mechanical properties of the friction welding zone of solid and hollow shafts made with SM20C according to the depth of the notch. Friction welding was conducted at welding conditions of 2,000 rpm, friction pressure of 60MPa, friction time of 1.4 seconds, upset pressure of 100MPa, and upset time of 2.0 seconds. In the tensile strength test, the tensile strength decreased as the depth of the notch increased. Tensile strength was moderately high when the depth of the notch was 2mm. The tensile strength of the welding zone increased as the friction revolution radius increased, because the latter led to the generation of adequate friction heat. According to the hardness test, hardness likewise increased as e friction revolution radius increased. In the bending test, the bend strength of the solid shaft decreased when the depth of the notch was 0-2mm but increased when the latter was 3-5mm. With regard to the hollow shaft, the bend strength drastically decreased when the depth of the notch was 3-4mm. Upon examination it was found that the microstructure became finer when the friction revolution radius increased.

Optimal Welding Condition of Dissimilar Friction Welded Materials and Its Real Time Evaluation by Acoustic Emission (이종마찰용접재의 최적용접조건과 음향방출에 의한 실시간 품질평가)

  • Kong, Yu-Sik;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.191-199
    • /
    • 2019
  • In this paper, dissimilar friction welding were produced using 15 mm diameter solid bar in chrome molybedenum steel(SCM440) to stainless steel(STS316L) to investigate their mechanical properties. Consequently, optimal welding conditions were n=2000 rpm, HP=70 MPa, UP=140 MPa, HT=10 sec and UT=10 sec when the metal loss(Mo) is 8.6 mm. In addition, an acoustic emission technique was applied to evaluate the optimal friction welding condition. AE parameters including the cumulative count, amplitude and energy showed a various changes according to the friction condition. A continuous type waveforms and low frequency spectrum was presented in friction time. On the other hand, a burst type waveform and high frequency spectrum was exhibited in pressing time.

Correlation of the Wall Skin-Friction and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer(II) (난류경계층에서 벽마찰력과 유동방향 속도성분과의 상관관계(II))

  • Yang, Jun-Mo;Yu, Jeong-Yeol;Choe, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.427-435
    • /
    • 1997
  • Conditional sampling techniques are utilized to investigate the relation between the wall skin-friction and stream wise velocity fluctuations in a turbulent boundary layer. Conditionally averaged results using a peak detection and the VITA (variable-interval time-averaging) technique show that a high skin friction is associated with high frequency components of the wall skin-friction fluctuations. The conditionally averaged wall skin-friction fluctuations obtained by using the VITA technique have a positively-skewed characteristics compared with the conditionally averaged stream wise velocity fluctuations. It is confirmed that there exists a phase shift between the wall skin-friction and stream wise velocity fluctuations, which was also found from the long-time averaged space-time correlations. The amount of phase shift between the wall skin-friction and stream wise velocity fluctuations is the same as that from the long-time averaged space-time correlations and does not change despite the variation of the detection threshold.

A Study on the Properties in Friction Weldability of Dissimilar Aluminum Alloys A2024-T6/ A6061-T6 (A2024-T6/ A6061-T6의 마찰용접 특성에 관한 연구)

  • Lee Se-Gyoung;Min Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • This study deals with the friction welding of A2024- T6 to A6061- T6; The friction time was variable conditions under the conditions of spindle revolution of 2000rpm, friction pressure of 50MPa, upset pressure of 100MPa, and upset time of 5.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied, of friction weld, and so the results were as follows. 1. When the friction time was 1.5seconds under the conditions, the maximum tensile strength of the friction weld happened to be 292MPa, which is $94.2\%$ of the base material's tensile strength(310MPa). At the same condition, the maximum shear strength was 2l2MPa, which is equivalent to $103\%$ of the base material's shear strength (205MPa). 2. At the same condition, the maximum vickers hardness was Hv 146 at A2024- T6 nearby weld interface, which is higher Hv3 than condition of the friction time 0.5seconds, and the maximum vickers hardness was Hvl20 from weld interface of A6061-T6, which is higher Hv28 then base material's. 3. The results of microstructure analysis show that the structures of two base materials have fractionized and rearranged along a column due to heating and axial force during friction, which has affected in raising hardness and tensile strength.

Effects of Friction Pressure on Bonding Strength and a Characteristic of Fracture in Friction Welding of Cu to Cu-W Sintered Alloy (동-텅스텐 소결합금(Cu-W)과 동(Cu)의 마찰용접에서 마찰압력이 접합강도와 파단특성에 미치는 영향)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.90-98
    • /
    • 1997
  • A copper-tungsten sintered alloy(Cu-W) has been friction welded to a tough pitch copper in order to investigate the effect of friction pressure on bonding strength and a charicteristic of fracture. The tensile strength of the friction welded joint was increased up to 90% of the Cu base metal under the condition of friction time 1.2 sec, friction pressure 4.5kgf/$\textrm{mm}^2$ and upset pressure 10kgf/$\textrm{mm}^2$. From the results of fracture surface analysis, the increase of friction pressure could remarkably decrease the force and the time to be normally acted on weld interface. The W particles which were included in the plastic zone of Cu side could induce fracture adjacent to the weld interface because their existance in Cu induces a decrease in available section area and an increase in notch effect. Therefore, the tensile strength was decreased at high friction pressure (6kgf/$\textrm{mm}^2$) because the destruction of W was increased by an increase in mechanical force and crack was formed at weld interface.

  • PDF

고강도 알루미늄 합금 A7075-T6의 마찰용접성에 관한 연구

  • 강성보
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.71-75
    • /
    • 1998
  • This study deals with the friction weldability of A7075-T6 having high specific strength. The friction welding conditions used are rotation speed 2000rpm, friction pressure 40MPa, friction time 1.5sec, upset pressure 40~100MPa, upset time 5sec. First, upset length was measured by displacement transducer. The plastic flow in 7075-T6 weld generates convex lens shaped resion by friction and concave lens shaped resion by axial force. Under the condition of upset pressure 85MPa, the friction welds have tensile strength of 552MPa and shear strength of 262MPa.

  • PDF

A Study on Friction weldability of Copper-Tungsten Sinterd Alloy to Copper (WCu-Cu 전기접점의 마찰용접 특성 연구)

  • An, Y.H.;Yoon, G.G.;Min, T.K.;Han, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1934-1937
    • /
    • 1999
  • A copper-tungsten sintered alloy(Cu-W) has been friction-welded to a tough pitch copper (Cu) in order to investigate friction weldability. The tensile strength of the friction welded joint was increased up to 87% of the Cu base metal under the condition of friction time 1.0 see, friction pressure 40MPa and upset pressure 100MPa, upset time 5.0 sec. And it is related to upset pressure rather than friction time. Mixed layer was formed in the Cu adjacent weld interface and W particles which were included in mixed layer could induce fracture in the Cu adjacent to the weld interface. Thickness of mixed layer was reduced as upset pressure increase.

  • PDF

Adaptive Discrete Time Sliding-Mode Tracking Control of a Proportional Control Valve-Hydraulic System in the presence of friction (비선형 마찰특성을 고려한 비례제어밸브·유압실린더계의 적응 이산시간 슬라이딩모드 추적제어)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.756-762
    • /
    • 2009
  • As nonlinear friction, stick-slip friction in hydraulic actuators are a problem for accuracy and repeatability. Therefore friction compensation has been approached through various control algorithms. A Adaptive discrete time sliding mode tracking controller has been applied in order to compensate the nonlinear friction characteristics in a hydraulic Actuator. Based on the diophantine equation, a new discrete time sliding function is defined and utilized for the control law which includes a friction and modeling error. Robustness is increased by using both a projection algorithm and a sliding function-based nonlinear feedforward. From the results of simulation and experiment good tracking performance is achieved.

  • PDF

Real Time Analysis of Friction/Wear Characteristics of Metal Coatings with a Tribo-tester Installed in an SEM (SEM 내부에 설치된 트라이보 시험기를 통한 금속 코팅의 실시간 마찰/마모 특성 분석)

  • Kim, Hae-Jin;Kim, Dae-Eun;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.318-324
    • /
    • 2018
  • This study aims to visualize the friction and wear behaviors of metal coatings in real time. The main mechanism of wear is identified by observing all the processes in which wear occurs. The friction coefficients of the moments are monitored to confirm the relationship between the friction and wear characteristics of the coating. Thin Ag coatings, which are several hundred nanometers in thickness, are prepared by depositing Ag atoms on silicon substrates through a sputtering method. A pin-on-disk-type tribo-tester is installed inside a scanning electron microscope (SEM) to evaluate the friction and wear characteristics of the Ag coating. A fine diamond pin is brought into contact with the Ag coating surface, and a load of 20 mN is applied. The contact pressure is calculated to be approximately 15 GPa. The moments of wear caused by the sliding motion are visualized, and the changes in the friction characteristics according to each step of wear generation are monitored. The Ag coating can be confirmed to exhibit a wear phenomenon by gradually peeling off the surface of the coating on observing the friction and wear characteristics of the coating in real time inside the SEM. This can be explained by a typical plowing-type wear mechanism.