• Title/Summary/Keyword: FRACTAL method

Search Result 354, Processing Time 0.032 seconds

Quantification of Heterogenous Background Fractures in Bedrocks of Gyeongju LILW Disposal Site (경주 방폐장의 불균질 배경 단열의 정량화)

  • Cho, Hyunjin;Cheong, Jae-Yeol;Lim, Doo-hyun;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.463-474
    • /
    • 2017
  • Heterogeneous background fractures of granite and sedimentary rocks in Gyeongju LILW (low-intermediate level radioactive waste) facility area have been characterized quantitatively by analyzing fracture parameters (orientation, intensity, and size). Surface geological survey, electrical resistivity survey, and acoustic televiewer log data were used to characterize the heterogeneity of background fractures. Bootstrap method was applied to represent spatial anisotropy of variably oriented background fractures in the study area. As a result, the fracture intensity was correlated to the inverse distance from the faults weighted by nearest fault size and the mean value of electrical resistivity and the average volumetric fracture intensity ($P_{32}$) was estimated as $3.1m^2/m^3$. Size (or equivalent radius) of the background fractures ranged from 1.5 m to 86 m and followed to power-law distribution based on the fractal property of fracture size, using fractures measured on underground silos and identified surface faults.

The Analysis Method of Landscape Fragmentation using Normalized Difference Vegetation Index (식생지수에 의한 경관파편화의 해석기법)

  • Jeong, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.3
    • /
    • pp.16-22
    • /
    • 1999
  • The various spatial structure of biological habitat has tighten relationship with biodiversity. Due to increasing of population, development of agriculture and urban structure, various change of landscape has became these days. These change of landscape has raised the decrease of habitat and landscape fragmentation. This paper summarizes research to analysis vegetation index according to P/A ratio, Shape Index, and Fractal dimension using Landsat Thematic Mapper(TM). The analysis of landscape fragmentation using NDVI(Normalized Difference Vegetation Index) 0.5~1 has the most profitable for detection of vegetation fragmentation. The analysis of vegetation index of Seoul and Kyunggi province has also showed that Fractal dimension has the most fragmentation index. In near future, time series analysis is needed for fragmentation of vegetation on the same area, and for various landuse of fragmentation analysis. These researches were carried out for preservation strategy of vegetation and biodiversity.

  • PDF

Multi-Scaling Models of TCP/IP and Sub-Frame VBR Video Traffic

  • Erramilli, Ashok;Narayan, Onuttom;Neidhardt, Arnold;Saniee, Iraj
    • Journal of Communications and Networks
    • /
    • v.3 no.4
    • /
    • pp.383-395
    • /
    • 2001
  • Recent measurement and simulation studies have revealed that wide area network traffic displays complex statistical characteristics-possibly multifractal scaling-on fine timescales, in addition to the well-known properly of self-similar scaling on coarser timescales. In this paper we investigate the performance and network engineering significance of these fine timescale features using measured TCP anti MPEG2 video traces, queueing simulations and analytical arguments. We demonstrate that the fine timescale features can affect performance substantially at low and intermediate utilizations, while the longer timescale self-similarity is important at intermediate and high utilizations. We relate the fine timescale structure in the measured TCP traces to flow controls, and show that UDP traffic-which is not flow controlled-lacks such fine timescale structure. Likewise we relate the fine timescale structure in video MPEG2 traces to sub-frame encoding. We show that it is possibly to construct a relatively parsimonious multi-fractal cascade model of fine timescale features that matches the queueing performance of both the TCP and video traces. We outline an analytical method ta estimate performance for traffic that is self-similar on coarse timescales and multi-fractal on fine timescales, and show that the engineering problem of setting safe operating points for planning or admission controls can be significantly influenced by fine timescale fluctuations in network traffic. The work reported here can be used to model the relevant characteristics of wide area traffic across a full range of engineering timescales, and can be the basis of more accurate network performance analysis and engineering.

  • PDF

Doped Sol-gel TiO2 Films for Biological Applications

  • Gartner, M.;Trapalis, C.;Todorova, N.;Giannakopoulou, T.;Dobrescu, G.;Anastasescu, M.;Osiceanu, P.;Ghita, A.;Enache, M.;Dumitru, L.;Stoica, T.;Zaharescu, M.;Bae, J.Y.;Suh, S.H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.1038-1042
    • /
    • 2008
  • Mono and multilayer TiO2(Fe, $PEG_{600}$) films were deposited by the dip-coating on $SiO_2$/glass substrate using sol-gel method. In an attempt to improve the antibacterial properties of doped $TiO_2$ films, the influence of the iron oxides and polyethilenglycol ($PEG_{600}$) on the morphological, optical, surface chemical composition and biological properties of nanostructured layers was studied. Complementary measurements were performed including Spectroscopic Ellipsometry (SE), Scanning Electron Microscopy (SEM) coupled with the fractal analysis, X-Ray Photoelectron Spectroscopy (XPS) and antibacterial tests. It was found that different concentrations of Fe and $PEG_{600}$ added to coating solution strongly influence the porosity and morphology at nanometric scale related to fractal behaviour and the elemental and chemical states of the surfaces as well. The thermal treatment under oxidative atmosphere leads to films densification and oxides phase stabilization. The antibacterial activity of coatings against Escherichia Coli bacteria was examined by specific antibacterial tests.

Prediction of age-related osteoporosis using fractal analysis on panoramic radiographs

  • Koh, Kwang-Joon;Park, Ha-Na;Kim, Kyoung-A
    • Imaging Science in Dentistry
    • /
    • v.42 no.4
    • /
    • pp.231-235
    • /
    • 2012
  • Purpose: This study was performed to evaluate the trabecular pattern on panoramic radiographs to predict age-related osteoporosis in postmenopausal women. Materials and Methods: Thirty-one postmenopausal osteoporotic women and 25 postmenopausal healthy women between the ages of 50 and 88 were enrolled in this study. The bone mineral density (BMD) of the lumbar vertebrae and femur were calculated using dual-energy X-ray absorptiometry (DXA), and panoramic radiographs were obtained. Fractal dimension (FD) was measured using the box counting method from 560 regions of interest ($51{\times}51$ pixels) in 6 sites on the panoramic radiographs. The relationships between age and BMD and between FD and BMD were assessed, and the intraobserver agreement was determined. Results: There was a significant difference in the FD values between the osteoporotic and normal groups (p<0.05). There was a significant difference in the FD values at three sites in the jaws (p<0.05). Age was significantly correlated with the BMD measurements, with an odds ratio of 1.25. However, the FD values were not significantly correlated with the BMD measurements, with an odds ratio of 0.000. The intraobserver agreement showed relatively higher correlation coefficients at the upper premolar, lower premolar, and lower anterior regions than the other sites. Conclusion: Age was an important risk factor for predicting the presence of osteoporosis in postmenopausal women. The lower premolar region was the most appropriate site for evaluating the FD value on panoramic radiographs. However, further investigation might be needed to predict osteoporosis using an FD value on panoramic radiographs.

Analysis of Behavioral Changes in Angelfish (Pterophyllum scalare) Infected with Bacterial Pathogens using Video Tracking (Video tracking을 이용한 병원성 세균에 감염된 angelfish (Pterophyllum scalare)의 행동 변화 분석)

  • Yoon-Jae, Kim;Young-Ung, Heo;Ju-Sung, Kim;Min-Kyo, Kim;Do-Hyung, Kim
    • Journal of fish pathology
    • /
    • v.35 no.2
    • /
    • pp.205-214
    • /
    • 2022
  • In recent years, there have been many studies investigating changes in animal behavior using video tracking technology to track motion. However, there have been very few studies and results on changes in the behavior of fish infected with a pathogen. Therefore, the present study attempted to analyze the behavior of angelfish (Pterophyllum scalare) infected with bacterial pathogens using video tracking. Two cameras were placed in front of the water tank to obtain behavior data, and tracking was performed for three days until the day of death. Data such as average speed, changes in speed, the locations of the fish in the tank, and fractal dimension were statistically analyzed based on the fish speed and location in the tank of the fish. For bacterial infection, an individual angelfish was intraperitoneally injected with approximately 106 CFU ml-1 of Aeromonas hydrophila or Edwardsiella piscicida. The experiment was carried out five times for each group. Fish infected with the bacterial pathogens showed a tendency to increase in speed and to spend more time in the upper part of the tank one or two days before death. On the day the fish died, the average speed, changes in speed, and the fractal dimension value were significantly lower than the corresponding values in the control group, and the fish also remained in the lower part of the tank. Our results indicated that behavioral changes in fish could be successfully detected earlier than death using video tracking technology, and that this method presents potential for disease monitoring in aquaculture.

Reconstruction of 3D Topography from Contour Line Data using Artificial Neural Networks (신경회로망을 이용한 등고선 데이터로부터 3차원 지형 복원)

  • Su-Sun Kim
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.297-308
    • /
    • 2001
  • We propose an algorithm which can reconstruct the 3D information from geographical information. The conventional techniques, the triangular patches and the Random Fractal Midpoint Displacement (RFMD) method, etc., have often been used to reconstruct natural images. While the RFMD method using Gaussian distribution obtains good results for the symmetric images, it is not reliable on asymmetric images immanent in the nature. Our proposed algorithm employs neural networks for the RFMD method to present the asymmetrical images. By using a neural network for reconstructing the 3D images, we can utilize statistical characteristics of irregular data. We show that our algorithm has a better performance than others by the point of view on the similarity evaluation. And, it seems that our method is more efficient for the mountainous topography which is more rough and irregular.

  • PDF

Insulation Ageing Diagnosis Using HFPD Pattern Analysis (HFPD 패턴분석을 이용한 절연열화 진단)

  • Kim, Deok-Keun;Yeo, In-Sun;Lim, Jang-Seob;Lee, Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1726-1728
    • /
    • 2003
  • The aging diagnosis method using partial discharge measurement detects discharge signals that critical cause of failure in insulation material operated a long time and can diagnose aging state of insulation materials with an aging analysis algorithm. The HFPD measurement method is a technique to analyze aging state of high voltage insulation materials and detect higher frequency signals than conventional PD measurement method therefore it takes less noise effect and could execute active line measurement. It is possible to analyze main discharge phenomena and obtain access to aging progress occurred in insulation materials through accumulation of HFPD signals during determined interval and expression of fractal dimension using statistical process of accumulated signals. The HFPD signals that occurred in each applied voltages are measured during 180 cycles and accumulated to the same phase of one cycle. These patterns that made by previous method are normalized with logarithm function and than inputted to neural networks. The aging diagnosis of insulation material was possible and the recognition ratio of neural network appeared very high.

  • PDF

A Study on the Quantified Criteria in Determining the Geostructural Domain of Fractured Rock Mass (절리암반내 지구조구 설정을 위한 정량적 기준에 대한 연구)

  • Um Jeong-Gi;Cho Taechin;Kwon Soon Jin
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.26-37
    • /
    • 2006
  • This study addresses the applicability of box fractal dimension, $D_B$, as an index of statistical homogeneity of fractured rock mass. The box-count method's capability in quantifying the combined effect of fracture density and size distribution is examined systematically. Total of 129 two-dimensional fracture configurations were generated based on different combinations of fracture size distribution and fracture density. $D_B$was calculated for the generated fracture network systems using the box-counting method. It was found that was standard deviation of trace length and fracture orientation have no effect on calculated $D_B$. The estimated $D_B$ was found to increase with increasing total density and/or mean trace length. To explore the field applicability of this study, the statistical homogeneity of fractured rock mass was investigated at the rock slope and the underground facility using the box-counting method as well as conventional contingency table analysis. The results obtained in this study clearly show that the methodologies given in this paper have the capability of determining the statistical homogeneity of fractured rock mass.

Simulation of the Brownian Coagulation of Smoke Agglomerates in the Entire Size Regime using a Nodal Method (결절법을 이용한 전영역에서의 연기입자 응집체에 대한 브라운응집현상 해석)

  • Goo, Jae-Hark
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.681-691
    • /
    • 2011
  • The size distributions of smoke particles from fire are prerequisite for the studies on fire detection and adverse health effects. Above the flame of the fire, coagulation dominates and the smoke particles grow from 1 to 50 nm up to 100 to 3,000 nm, sizes ranging from the free-molecular regime to the continuum regime. The characteristics of the agglomeration of the smoke particles are well known, independently for each of the free-molecular and continuum regimes. However, there are not many systematic studies in the entire regime by the complexity of the mechanisms. The purpose of this work is to find the characteristics of the development of the size distribution of smoke particles by agglomeration in the entire size range covering the free-molecular regime, via transition regime, to the near-continuum and continuum regime for each variation of parameters such as fractal dimension, primary particle size and dimensionless coagulation time. In this work, the dynamic equation for the discrete-size spectrum of the particles was solved using a nodal method based on the modification of a sectional method. In the calculation, the collision frequency function for the entire regime, which is derived by using the concept of collision volume and general enhancement function, was applied. The self-preserving size distribution for the entire regime is compared with the ones for the free-molecular or continuum regimes for each variation of the parameters.