• Title/Summary/Keyword: FOREST VEGETATION TYPE

Search Result 360, Processing Time 0.034 seconds

Changes Over Time in the Community Structure and Spatial Distribution of Forest Vegetation on Mt. Yeompo, Ulsan City, South Korea (염포산 산림식생의 군락 구조 및 공간 분포의 경시적 변화)

  • Oh, Jeong-Hak;Kim, Jun-Soo;Cho, Hyun-Je
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.145-156
    • /
    • 2020
  • In 2000 and 2018, phytosociological surveys were carried out in the forest vegetation of Mt. Yeompo, a representative isolated urban forest in Ulsan city. The trends of change in forest structure, composition, and spatial distribution were compared between years. Total percent coverage per 100 squaremeters of forest vegetation was similar, but natural vegetation showed a 9% increase. The importance of constituent species changed slightly. Specifically, Lindera erythrocarpa and Styrax japonicus showed very high growth rates of 835% and 269%, respectively. Species richness (S) and diversity (H') decreased by about 22% and 8%, respectively. Both S and H' showed slightly higher rates of decrease in artificial compared with natural vegetation. The constituent species life form spectrums were the same in 2000 and 2018 as 'MM-R5-D4-e'. The similarity (Jaccard coefficient) in the species composition of the forest vegetation was almost homogeneous at approximately 75%. The number of indicator species decreased from 16 species in 2000 to 7 species in 2018. This decrease was mostly due to a decline in herbaceous plants, such as Hemicryptophytes, Geophytes, and Therophytes, which are sensitive to disturbances. The spatial distribution of forest vegetation did not change significantly. The number of forest landscape elements (patches) increased by approximately 25% from 537 in 2000 to 721 in 2018, while the average size decreased by about 20% from 1.28 ha in 2000 to 1.03 ha in 2018.

Relationships between Community Unit and Environment Factor in Forest Vegetation of Mt. Dutasan, Pyeongchang-gun (평창 두타산 산림식생의 군집유형과 입지환경요인의 상관관계)

  • Lee, Jeong Eun;Shin, Jae Kwon;Kim, Dong Gap;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.3
    • /
    • pp.275-287
    • /
    • 2017
  • The purpose of this study was to analyze forest vegetation type classification and relationships between the type and environment factor in Mt. Dutasan. Data were collected by total of forty six plots using Z-M phytosociological method from June to October, 2016, and analyzed by vegetation classification, canopy layer structure and relationships between vegetation unit and environment factor using coincidence methods. As a result of vegetation type classification, Quercus mongolica community group was classified at a top level of vegetation hierarchy that was classified into Rhododendron schlippenbachii community and Betula costata community. R. schlippenbachii community was divided into Lychnis cognata group and R. schlippenbachii typical group. L. cognata group was subdivided into Veratrum oxysepalum subgroup and L. cognata typical subgroup. B. costata community was divided into Fraxinus mandshurica group and Betula schmidtii group. F. mandshurica group was subdivided into Weigela subsessilis subgroup and Cimicifuga heracleifolia subgroup. Therefore the forest vegetation was composed of six vegetation units with two kinds of bisected species groups and fourteen species groups. As the result of an analysis of canopy layer structure, there were two kinds of structures with monotonous structures V. oxysepalum subgroup (vegetation units 1), L. cognata typical subgroup (vegetation units 2), W. subsessilis subgroup (vegetation units 4) and complicated structures R. schlippenbachii typical group (vegetation units 3), C. heracleifolia subgroup (vegetation units 5), Betula schmidtii group (vegetation units 6). The vertical layer structure of vegetation unit 5 was the most developed and vegetation unit 6 had the lowest coverage of herb layer. According to the correlation between vegetation unit and environmental factor, R. schlippenbachii community (vegetation units 1~3) and B. costata community (vegetation units 4~6) were classified based on 1,100 m of altitude, middle slope, twenty of slope degree, twenty percents of bare rock and thirty centimeters of DBH in tree layer. R. schlippenbachii community (vegetation units 1~3) showed positive correlation with altitude, topography and B. costata community (vegetation units 4~6) showed negative correlation tendency with them.

A Review of Vegetation Succession in Warm-Temperate Evergreen Broad-Leaved Forests -Focusing on Actinodaphne lancifolia Community- (난온대 상록활엽수림 지역의 식생천이계열 고찰 -육박나무군락을 중심으로-)

  • Park, Seok-Gon;Choi, Song-Hyun;Lee, Sang-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.77-96
    • /
    • 2018
  • We investigated and analyzed three Korean island sites (Bijin-do, Ae-do, and Bogil-do) and one Japanese site (Tachibanayama) of sword-leaf litsea (Actinodaphne lancifolia) forests, known as the climax forest, to discuss the vegetation succession sere of warm-temperature evergreen broad-leaved forests. We then reviewed the literature in Korea, Japan, China, and Taiwan to consider the distribution characteristics of evergreen broad-leaved forests, vegetation succession sere, and climax tree species. Although Mt. Tachibana and Ae-do showed the most advanced vegetation structure, the soil and ordination (CCA) analysis indicated that it was not enough to consider that the sword-leaf litsea forest was at the climax stage in the warm-temperature region. The Actinodaphne lancifolia forest is sparsely distributed in Korea and Japan while the common types of vegetation in the warm temperate zone region in East Asia are Machilus spp., Castanopsis spp., and Cyclobalanopsis spp. The vegetation succession sere of the Korean warm-temperature region is thought to have a secondary succession such as Pinus thunbergii, P. densiflora, Q. serrata (early stage) through Machilus thunbergii, innamomum yabunikkei, Neolitsea sericea, Actinodaphne lancifolia (middle stage) to Castanopsis sieboldii, Q. acuta, Q. salicina (climax stage). However, Machilus thunbergii will be the climax species as an edaphic climax in places where there is a strong influence of the sea wind, or it is difficult to supply the seeds of Castanopsis spp. and Cyclobalanopsis spp.

Effects of Environmental Factors on the Stability and Vegetation Survival in Cutting Slope of Forest Roads (임도 절토 비탈면의 안정과 식생활착에 미치는 환경인자의 영향)

  • Jung, Won-Ok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.74-83
    • /
    • 2001
  • The purpose of this study was investigate to the influence of forest roads characteristics and environment factors on the soil erosion, stability and vegetation survival of cut slope in forest roads. The results obtained could be summarized as follows; 1. The correlated factors between slope erosion and variables in cut slope were altitude, convex, degree of slope, length of slope and soil depth. In the stepwise regression analysis, length of slope and soil hardness was a high significant and its regression equation was given by -89.6136 + 15.0667X14 + 16.6713X15($R^2$ = 0.6712). 2. The main factors influencing the stability of cut slope were significant in order of coverage, middle, convex, length of slope and north, and its discriminant equation was given by -1.019 + 0.064X22 - 0.808X8 - 0.622X24 + 0.742X11 - 0.172X14 - 0.545X6 ($R^2$ = 0.793). 3. The centroids value of discriminant function in the stability and unstability estimated to 1.244 and -1.348, respectively. The boundary value between two groups related to slope stability was -0.1038. The prediction rate of discriminant function for stability evaluation of was as high as 91.3%. 4. The dominant species of invasion vegetation on the cut slope consist with Carex humilis, Agropyron tsukushiense var. transiens, Calamagrostis arundinacea, Miscanthus sinensis var. purpurascens, and Ixeris dentata in survey area. The rate of vegetation invasion more increased by time passed. 5. The life form of invasion vegetation in cut slop showed to $H-D_1-R_{2,3}-e$ type of the hemicryptophyte of dormancy form, dissem inated widely by wind and water of dissminule type, moderate extent and narrowest extent of radicoid type, erect form of growth form. 6. The correlated factors between forest enviroment and coverage appeared north, passage years and middle position of slope at 5% level. The forest environment factors influencing the invasion plants in survey area were shown in order to altitude, passage years, rock(none), forest type(mixed) and stone amount. The regression equation was given by 17.5228 - 0.0911X3 + 3.6189X28 15.8493X22 19.8544X25 + 0.3558X26 ($R^2$ = 0.4026).

  • PDF

Classification of Forest Vegetation for Forest Genetic Resource Reserve Area in Heuksando sland (흑산도 산림유전자원보호구역의 산림식생 유형)

  • Lee, Jeong-Eun;Shin, Jae-Kwon;Kim, Dong-Kap;Yun, Chung-Weon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.289-302
    • /
    • 2018
  • The study investigated the forest vegetation in 59 plots between June 2017 and August 2017 to understand the forest vegetation structure of the protected zone for forest genetic resource conservation (forest genetic resource reserve area) in Heuksando Island. We classified the vegetation using the Z-M phytosociological method analyzed the importance value and species diversity of each vegetation classification. The analysis showed the Camellia japonica community group at a top level of forest vegetation hierarchy. In the level of community, it was classified into Dendropanax morbiferus community (Vegetation unit 1; VU 1), Carpinus turczaninowii community, and C. japonica typical community (VU 6). C. turczaninowii community was subdivided into Buxus koreana group (VU 2), Rhododendron mucronulatum group (VU 3), Vitis amurensis group (VU 4) and C. turczaninowii typical group (VU 5). Therefore, it was classified into a total of six vegetation units (one community group, three communities, and four groups). The analysis of the mean codominant value of each VU show that Quercus acuta was the highest in VU 1, C. turczaninowii in VU 2, Pinus thunbergii in VU 3, Pinus densiflora in VU 4, and Castanopsis sieboldii in VU 5 and VU 6. The analysis of species diversity showed that VU 2 was the highest among six units in species richness index, species diversity index, and species evenness index. VU 6 showed the highest among six units in species dominance index. In conclusion, a synecology approach to manage six units and twelve species groups was needed for the forest vegetation of Heuksando Island protected area for forest genetic resource conservation.

How is SWIR useful to discrimination and a classification of forest types?

  • Murakami, Takuhiko
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.760-762
    • /
    • 2003
  • This study confirmed the usefulness of short-wavelength infrared (SWIR) in the discrimination and classification of evergreen forest types. A forested area near Hisayama and Sasaguri in Fukuoka Prefecture, Japan, served as the study area. Warm-temperate forest vegetation dominates the study site vegetation. Coniferous plantation forest, natural broad-leaved forest, and bamboo forest were analyzed using LANDSAT5/TM and SPOT4/HRVIR remote sensing data. Samples were extracted for the three forest types, and reflectance factors were compared for each band. Kappa coefficients of various band combinations were also compared by classification accuracy. For the LANDSAT5/TM data observed in April, October, and November, Bands 5 and 7 showed significant differences between bamboo, broad-leaved, and coniferous forests. The same significant difference was not recognized in the visible or near-infrared regions. Classification accuracy, determined by supervised classification, indicated distinct improvements in band combinations with SWIR, as compared to those without SWIR. Similar results were found for both LANDSAT5/TM and SPOT4/HRVIR data. This study identified obvious advantages in using SWIR data in forest-type discrimination and classification.

  • PDF

The Ecological Diagnosis of the Vegetation in Urban Neighborhood Park -In case of Hwasan Park, Chonju- (도시근린공원 식생의 생태학적 진단 -전주화산공원을 중심으로-)

  • Kim, Chang-Hwan;Myung, Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.6
    • /
    • pp.62-76
    • /
    • 2001
  • This study is to offer the basic information and materials for the restoration of the urban forest and the ecologically healthy and continuous green belt through the investigation and the analysis on the vegetation in Hwasan Park, Chonju-City. The flora of Hwasan Neighborhood park was composed of 86 families 230 genera, 261 species, 35 varieties, 1 formae or 298 Taxa. Among them, calculation of Pte-Q Index represented 0.60, Fisher's Index. Some characteristics of the plants in this area have represented such as Th-D1-R5 type in biological type, erect form(64.6%) in growth type, 30 taxa in naturalized plants. The life form spectra investigated from Hwasan neighborhood park was recognized as the following M"17.4%, N:11.4%, E:0.3%, Ch:0%, H:29.8%, G:6.7%, HH:0%, Th:34.2%. By the Z-M method 5 plant communities and 3 afforestation were recognized; Quercus variabilis community, Q.acutissima community, Q.serrata community, Sorbus alnifolia community, Pinus densiflora community, P.rigida afforestation, Robinia pseudo-acacia afforestation and Larix leptolepis afforestation. The actual vegetation map constructed on the grounds of the communities classified and other data. The pattern of successional trend of tree species might be suggested: L. leptoleipis, P. rigida and P. densifloralongrightarrowQ.variabilis and Q.acutissimalongrightarrowS.alnifolia and Q.serratalongrightarrowCarpinus tschonoskii community. Three measurements of species diversity (richness index(SR), Shannon-Wiener index(H'), evenness index(J')) and their relationship with community type were studied in the surveyed plant communities. Q.serrata community was higher in SR, H', J' than the other communities, whereas R.pseduo-acacia afforestation was low. Finally, The vegetation of the Hwasan neighborhood park must not allowed any more. Nothing ca be better than native states in preserving the ecosystems.tems.

  • PDF

Detecting Phenology Using MODIS Vegetation Indices and Forest Type Map in South Korea (MODIS 식생지수와 임상도를 활용한 산림 식물계절 분석)

  • Lee, Bora;Kim, Eunsook;Lee, Jisun;Chung, Jae-Min;Lim, Jong-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.267-282
    • /
    • 2018
  • Despite the continuous development of phenology detection studies using satellite imagery, verification through comparison with the field observed data is insufficient. Especially, in the case of Korean forests patching in various forms, it is difficult to estimate the start of season (SOS) by using only satellite images due to resolution difference. To improve the accuracy of vegetation phenology estimation, this study reconstructed the large scaled forest type map (1:5,000) with MODIS pixel resolution and produced time series vegetation phenology curves from Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) derived from MODIS images. Based on the field observed data, extraction methods for the vegetation indices and SOS for Korean forests were compared and evaluated. We also analyzed the correlation between the composition ratio of forest types in each pixel and phenology extraction from the vegetation indices. When we compared NDVI and EVI with the field observed SOS data from the Korea National Arboretum, EVI was more accurate for Korean forests, and the first derivative was most suitable for extracting SOS in the phenology curve from the vegetation index. When the eight pixels neighboring the pixels of 7 broadleaved trees with field SOS data (center pixel) were compared to field SOS, the forest types of the best pixels with the highest correlation with the field data were deciduous forest by 67.9%, coniferous forest by 14.3%, and mixed forest by 7.7%, and the mean coefficient of determination ($R^2$) was 0.64. The average national SOS extracted from MODIS EVI were DOY 112.9 in 2014 at the earliest and DOY 129.1 in 2010 at the latest, which is about 0.16 days faster since 2003. In future research, it is necessary to expand the analysis of deciduous and mixed forests' SOS into the extraction of coniferous forest's SOS in order to understand the various climate and geomorphic factors. As such, comprehensive study should be carried out considering the diversity of forest ecosystems in Korea.

The Characteristics of Early Changes in Vegetation Structure by Forest Cover Type after Forest Fire Damage in Uljin region (울진지역 산불피해지의 산림피복형별 식생구조의 초기 변화 특성)

  • Kim, Tae-Woon;Han, Young-Sub;Lee, Sung-Ho;Lim, Chae-young;Hur, Tae-chul;Im, Chang-Kyun;Gil, Min-Kyung;Park, Joon-hyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.3
    • /
    • pp.1-18
    • /
    • 2024
  • The study aims to establish a direction for forest ecological restoration by classifying forest types and understanding the ecological characteristics of the Uljin forest area damaged by a large fire in 2022. Hierarchical cluster analysis and indicator species analysis were conducted on 78 survey plots located in the forest fire-affected area, and four forest cover types were derived: P. densiflora pure forests, P. densiflora dominant forests, mixed broad-leaved forests, and Q. variabilis dominant forests. As a result of visually comparing changes in forest types before and after forest fire damage, by classifying data according to whether or not upper dead trees are included, it was confirmed that pine forests, which have a high proportion of pine trees, spread widely due to forest fire damage. However, broad-leaved mixed forests and oyster oak dominant forests showed characteristics of maintaining concentration, indicating that pine forests were severely damaged. As a result of the important value analysis, during the process of natural recovery after a forest fire, the species that appear early in the lower layer are the sprouts of existing species such as Quercus mongolica Fisch. ex Ledeb., Quercus variabilis Blume, Fraxinus sieboldiana Blume, Rhododendron mucronulatum Turcz. The distribution of diameter at breast height by forest cover type showed that among areas with extreme forest fire damage, the proportion of dead trees was relatively high and structural changes were large in P. densiflora pure forests and P. densiflora dominant forests where pine trees had a high distribution ratio. However, if continuous monitoring is carried out in the future with reference to the results of this study and plant data is collected and analyzed from a mid- to long-term perspective, it is believed that it will be used as useful data to promote forest ecological restoration projects in forest fire-affected areas.

A Study on the Recovery Rate of Vegetation in Forest Fire Damage Areas Using Sentinel-2B Satellite Images (Sentinel-2B 위성 영상을 활용한 산불 피해지역 식생 회복률에 관한 연구)

  • Gumsung Cheon;Kwangil Cheon;Byung Bae Park
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.463-472
    • /
    • 2023
  • The amount of damage and the area of damage to forest fires are increasing globally, and the effectiveness analysis of the restoration method after the damage is performed insufficient. This study calculated the area of forest fire damage was calculated using Sentinel-2B satellite images and stack map and the intensity of forest fire damage is analyzed according to the forest type. In addition, the vegetation index was calculated using various wavelength bands. Based on the results, the vegetation resilience by the restoration method was quantitatively. As results, areas with a high proportion of coniferous forests suffered high intensity forest fire damage, and areas with a relatively high ratio of mixed and broad-leaved forests tended to have low forest fire damage. Also, artificial forests showed a recovery of about 92.7% compared to before forest fires and natural forests showed a recovery of about 99.6% from the result of analyzing vegetation resilience in artificial and natural forests after forest fires. Accordingly, it was confirmed that natural forests after forest fire damage had superior vegetation resilience compared to artificial forests. It can be proposed that this study is meaningful in providing important information for efficiently restoring the affected target site and the selection criteria for trees to reduce forest fire damage through the evaluation of vegetation resilience by the intensity of forest fire damage and restoration methods.