• 제목/요약/키워드: FOREHAND-DRIVE

검색결과 5건 처리시간 0.022초

스쿼시 포핸드 드라이브 동작의 임팩트시 운동학적 주요요인 분석 (An Analysis on Kinematically Contributing Factors at Impact of Forehand Drive Motion in Squash)

  • 이경일;이희경
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.29-39
    • /
    • 2007
  • This study were obtained elapsed time phase-by-phases, displacement, user angle, velocity and angular velocity to analyse kinematically contributing factors at impact of forehand drive motion, on targeting three male players. The results of the study were presented as follows; In the forehand drive swing, the elapsed time by phases was a total of .52 seconds: .30 seconds from backswing to impact and .22 seconds from impact to follow-through, Considering the mean change in locations of COM of each(part$\rightarrow$body segment) at impact, racket head, left shoulder, right wrist and left hip, the left-right directions(X-axis) were showm to be each $.61{\pm}.03$, $1.19{\pm}.08$, $.66{\pm}.03$, $.94{\pm}.06$, and $.45{\pm}.03m$. The displacement differences of COM of each body segment were shown to be -.57, -.05, -.33, and .16m. For the vertical direction(Z-axis), the center of mass was lowest at impact and highest at E3. For the displacement of the right wrist on the left hip, the right wrist moved to .82m to the lower direction without change in the locations of the hip from E1 from E2. When the left hip moved .02m from E2 to E3, the right wrist moved .7m in the upper direction. In respect to the velocity of each body segment, the hip and the shoulder joint accelerated and then the wrist followed. Then the right wrists of all the subjects and their racket heads showed maximum speed, and an effective swing was observed. At the angle of each part, the angle of the right wrist was the smallest at the backswing and the largest at the moment of the impact. Then it increased gradually in the follow-through section. In respect of angular velocity for subject A, the hip moved and the largest change occurred. Immediately before the impact, the subject made a swing using his right wrist, his hip, and the shoulder joint, showing the maximum value, which was judged to be effective.

탁구 포핸드 드라이브와 스매시의 각운동학 분석 (Angular Kinematic Analysis of Forehand Drive and Smash in Table Tennis)

  • 손원일
    • 한국운동역학회지
    • /
    • 제18권1호
    • /
    • pp.11-19
    • /
    • 2008
  • 전국 규모의 경기에서 우승한 선수들을 포함한 남자대학 선수 8명을 대상으로 했다. 피험자의 4명은 펜홀더 그립, 4명은 세이크핸드 그립의 라켓을 사용하며 모두 오른손을 사용했다. 탁구의 포핸드 드라이브와 스매시의 라켓스윙동작과 관련된 각도성분, 스윙궤도, 스윙자세 등의 3차원 각운동 특성을 비교 분석한 결과 다음과 같은 결론을 얻었다. 라켓각(p<.05)과 라켓의 스윙각(p<.01)에서 두 동작 간 유의한 차이를 보였다. 스매시는 백스윙 자세에서 이미 라켓을 세워 라켓각을 크게 유지했으며, 라켓의 스윙각을 작게 해서 볼 스피드에 비중을 두는 것을 알 수 있었다. 또한 백스윙 자세에서 라켓헤드의 높이도 두 동작 간 큰 차이가 나타났다. 임팩트 순간 phg에서 두 동작 간 라켓 장축의 열림각의 차이가 크게 나타난 것을 보면, 볼에 순회전의 스핀을 넣기 위해서 약간 뒤에서 임팩트가 이루어진 것을 알 수 있었다. 백스윙 자세에서 상체의 기울기는 드라이브 동작에서 phg보다 shg에서 상체를 조금 더 구부리는 것은 중립 자세에서 라켓 그립의 구조적 차이로 인한 것으로 판단된다.

스쿼시 Forehand 드라이브 동작 시 운동역학적 비교연구 (A Comparative Analysis of Kinematics and Kinetics on Forehand Drive in Squash)

  • 진영완;박양희;박재영
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.17-25
    • /
    • 2007
  • The purpose of the study is to give basic data for the improvement of the skill and to show an exemplary position for squash club members or trainers thru a comparative analysis on the kinematics and kinetics variables on the forehand drive motion in playing squash. The objects of the research are divided into two sections, skilled group(n=8) and unskilled group(n=8). The skilled group is composed of professional players currently working and unskilled group is career of six month, both of lives in B city. In this research, to gather the data 3D motion analysis and test result analysis using force platform was used. The variables are duration, position, segment velocity, segment acceleration and etc. in using force platform. The results are as follows: 1. The duration per phase of the skilled is 0.18sec P1(DS) while that of unskilled is 0.32sec. in P2(FT), the duration of the skilled is 0.29sec, that of unskilled is 0.34sec. Average of the duration of the skilled is 0.48sec, while the unskilled, 0.66sec. 2. Regarding positional movements per event, the unskilled has a relatively higher position in center of gravity, shoulder joint, elbow joint compared with that of the skilled. Generally speaking, positions of the unskilled is higher than the skilled. 3. In segment velocity per event, R-shank, R-upper arm, R-forearm and racket. The skilled is faster than the unskilled. we found a big dig difference in shank. 4. In acceleration per event, there was a big difference in upper-arm and fore-arm of the impact. 5. The skilled group on the force platform shows relatively stable and regular changes while the unskilled shows unstable from the touch down to initial 20% the force value of central support period after the impact moment decreases rapidly and the center of gravity is not moved well. 6. The maximum force value of the skilled is 1019.7N. it is found 19.86% of the total duration. That of the unskilled is 639.2N, it is found 20.67% of total duration.

탁구 포핸드 카운터 드라이브 동작의 운동학적 변인 및 지면 반력 분석 (Kinematic and Ground Reaction Force Analyses of the Forehand Counter Drive in Table Tennis)

  • 이용식;이종훈
    • 한국운동역학회지
    • /
    • 제20권2호
    • /
    • pp.155-165
    • /
    • 2010
  • The purpose of this study was to analyze kinematic quantitative factors required of a forehand counter drive in table tennis through 3-D analysis. Four national table tennis players participated in this study. The mean of elapsed time for total drive motion was $1.009{\pm}0.23\;s$. At the phase of impact B1 was the fastest as 0.075 s. This may affect efficiency in the initial velocity and spin of the ball by making a powerful counter drive. The pattern of center of mass showed that it moved back and returned to where it was then moved forward. At the back swing, lower stance made wide base of support and a stronger and safer stance. It may help increasing the ball spin. Angle of the elbow was extended up to $110.75{\pm}1.25^{\circ}$ at the back swing and the angle decreased by $93.75{\pm}3.51^{\circ}$ at impact. Decreased rotation range of swinging arm increased linear velocity of racket-head and impulse on the ball. Eventually it led more spin to the ball and maximized the ball speed. Angle of knee joint decreased from ready position to back swing, then increased from the moment of the impact and decreased at the follow thorough. The velocity of racket-head was the fastest at impact of phase 2. Horizontal velocity was $7796.5{\pm}362\;mm/s$ and vertical velocity was $4589.4{\pm}298.4\;mm/s$ at the moment. It may help increase the speed and spin of the ball in a moment. The means of each ground reaction force result showed maximum at the back swing(E2) except A2. Vertical ground reaction force means suggest that all males and females showed maximum vertical power(E2), The maximum power of means was $499.7{\pm}38.8\;N$ for male players and $519.5{\pm}136.7\;N$ for female players.

불균형 신체발달 스쿼시 선수들의 교정 프로그램 개발 연구 (A Developmental Study of an Alignment Program for the Asymmetrically Developed Squash Players)

  • 김승권
    • 한국운동역학회지
    • /
    • 제25권4호
    • /
    • pp.423-429
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effects of a body alignment correction program on asymmetrically developed squash players. Method : 30 experienced squash players who showed asymmetric body development, after evaluation of moire topography contour line shape, were involved in the experiment. All of them were right-handed and had more than five years of experience playing squash. Variables of body composition, moire topography and EMG were statistically compared between pre- and post- application of the 12-week body alignment correction program. The program consisted of 10-minute, left-handed forehand and backhand drive movements and 36 minutes performing 12 different yoga postures. Results : First, the body alignment correction program showed significant effects on the total weight, body fat percentage, and body mass index of the participants. Second, a decrease of right side inclined angles and an increase of left side inclined angles might result in a higher left-right symmetry rate and a better left-right balance; however the data was not statistically significant. Third, the EMG left-right deviation of erector spinae and latissimus decreased and the erector spinae muscle was thought to be more essential for vertebral movement and left-right asymmetry correction. Conclusion : A body alignment correction program, including yoga and opposite side exercises, could reduce left-right asymmetry.