• Title/Summary/Keyword: FOOT PRESSURE

Search Result 529, Processing Time 0.035 seconds

Evaluation for Biomechanical Effects of Metatarsal Pad and Insole on Gait (보행 중 중족골 패드와 인솔의 생체역학적 영향성 평가)

  • Choi, Jung-Kyu;Park, In-Sik;Lee, Hong-Jae;Won, Yong-Gwan;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.487-494
    • /
    • 2011
  • The purpose of this study was to evaluate the effects of metatarsal pad (MP) compared with barefoot and MP with using different insoles on gait. 15 healthy females who had no history of injury in the lower extremity with an average age of 22.7 year(SD=1.35), height of 160 cm(SD=3.4), weight of 48.8 kg(SD=5.52) and average foot size of 232.5 mm(SD=6.8) participated in this study as the subjects. The subjects walked on a treadmill under four different experimental conditions: 1) walking with barefoot, 2) walking wearing MP 3) walking wearing a soft insole with MP(SIMP), 4) walking wearing a rigid insole with MP(HIMP). During walking, foot pressure data such as force, contacting area, peak pressure, and mean pressure was collected using Pedar-X System(Novel Gmbh, Germany) and EMG activity of lower limb muscles such as tibialis anterior(TA), lateral gastrocnemius(LG), rectus femoris(RF), and musculus biceps femoris(MBF) was gathered using Delsys EMG Work System(Delsys, USA). Collected data was then analyzed using paired t-test in order to investigate the effects of each of experimental conditions. As a result of the analysis, when MP and HIMP were equipped, overall contacting area was increased while the force, peak pressure and the mean pressure were decreased. Especially, when the SIMP was equipped, every data were significantly decreased. In case of EMG, wearing MP, SIMP and HIMP made three muscles(TA, LG, RF)'s activity decrease. A result of the analysis will be able to apply for manufacturing functional shoes, diabetes shoes, senior shoes and lower extremity orthosis. Significance of the study due to a metatarsal pad and the insole is to analyze the changes in muscle strength.

Comparison of the Effects of Different Foot Positions During Body-lifting in Wheelchair on Shoulder Muscle Activities, Peak Plantar Pressure, Knee Flexion Angle, and Rating Perceived Exertion in Individuals With Spinal Cord Injury (휠체어에서 엉덩이 들기 동작 동안 발위치가 척수손상환자의 어깨 근활성도, 최대 족저압, 무릎굽힘 각도, 운동자각도에 미치는 효과 비교)

  • Lee, Wang-jae;Lim, One-bin;Yoon, Byoung-gu;Lee, Bum-suk;Yi, Chung-hwi
    • Physical Therapy Korea
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • Background: Individuals with spinal cord injury (SCI) rely on their upper limbs for body-lifting activity (BLA). While studies have examined the electromyography (EMG) and kinematics of the shoulder joints during BLA, no studies have considered foot position during BLA. Objects: This study compared the effects of different foot positions during BLA on the shoulder muscle activities, peak plantar pressure, knee flexion angle, and rating perceived exertion in individuals with SCI. Methods: The study enrolled 13 mens with motor-complete paraplegic SCI, ASIA (American Spinal Injury Association) A or B. All subjects performed BLA with the feet positioned on the wheelchair footrest and on the floor independently. Surface EMG was used to collect data from the latissimus dorsi, pectoralis major, serratus anterior, and triceps brachii. The peak plantar pressure was measured using pedar-X and the knee flexion angle with Image J. Borg's rating perceived exertion scale was used to measure the physical activity intensity level. The paired t-test was used to compare the shoulder muscle activities, peak plantar pressure, knee flexion angle, and rating perceived exertion between the two feet positions during BLA. Results: The activity of the latissimus dorsi, pectoralis major, serratus anterior, and triceps brachii and rating perceived exertion decreased significantly and the peak plantar pressure and knee flexion angle increased significantly when performing BLA with the feet positioned on the wheelchair footrest compared with on the floor (p<.05). Conclusion: These findings suggest that individuals with SCI may perform BLA with the feet positioned on the wheelchair footrest for weight-relief lifting to decrease the shoulder muscle activities and the rating perceived exertion and to increase the peak plantar pressure and the knee flexion angle.

The Effects of Asymmetric Bag Carrying during Walking on Plantar Pressure (보행 시 비대칭성 가방 휴대가 족저압에 미치는 영향)

  • Park, Soo-Jin;Lee, Jung-Ho;Kim, Jin-Sang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.4
    • /
    • pp.459-469
    • /
    • 2012
  • PURPOSE: The purpose of the present study was to examine changes caused by asymmetric bag carrying methods to carry the bag with one shoulder only to plantar pressure during walking. METHODS: Twenty three normal adults without any gait problem participated in the present study. Experimental conditions used consisted of walking without carrying any bag(condition 1), walking wearing a bag on both shouders (condition 2), and walking wearing a bag on the right shoulder(condition 3) and the weight of the bag was set to 15% of each subject's body weight. All the subjects were instructed to participate in all experiments under these three conditions and plantar pressures were measured from the subjects' right and left feet using an F-scan system while the subjects were walking under the three conditions. To analyze the measured plantar pressure, the sole was divided into seven areas (Hallux, Toe, Met1, Met23, Met45, Mid foot and Heel) and maximum plantar pressures in individual areas were measured. RESULTS: The results of measurement of plantar pressures under three walking conditions did not show significant changes in any areas of the left and right feet except for the mid foot area of the right food. The asymmetry between the left and right feet was examined and the results showed significant differences only in area Met23 under condition 2 and did not show significant differences in any other areas. CONCLUSION: On comprehensively considering the results of the present study, it could be seen that asymmetric bag carrying did not have large effects on changes in plantar pressure during walking compared to symmetric carrying. The reason for this is considered to be posture adjusting mechanisms against load positions.

A Biomechanical Comparison of Cushioning and Motion Control Shoes During Running (달리기시 쿠션형과 모션컨트롤형 런닝화 착용에 따른 생체역학적 비교)

  • Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2005
  • Excessive pronation and impact force during running are related to various running injuries. To prevent these injuries, three type of running shoes are used, such as cushioning, stability, and motion control. Although there were may studies about the effect of midsole hardness on impact force, no study to investigate biomechanical effect of motion control running shoes. The purpose of this study was to determine biomechanical difference between cushioning and motion control shoes during treadmill running. Specifically, plantar and rearfoot motion, impact force and loading rate, and insole pressure distribution were quantified and compared. Twenty male healthy runners experienced at treadmill running participated in this study. When they ran on treadmill at 3.83 m/s. Kinematic data were collected using a Motion Analysis eight video camera system at 240 Hz. Impact force and pressure distribution data under the heel of right foot were collected with a Pedar pressure insole system with 26 sensors at 360 Hz. Mean value of ten consecutive steps was calculated for kinematics and kinetics. A dependent paired t-test was used to compare the running shoes effect (p=0.05). For most kinematics, motion control running shoes reduced the range of rearfoot motion compared to cushioning shoes. Runners wearing motion control shoe showed less eversion angle during standing less inversion angle at heel strike, and slower eversion velocity. For kinetics, cushioning shoes has the effect to reduce impact on foot obviously. Runners wearing cushioning shoes showed less impact force and loading rate, and less peak insole pressure. For both shoes, there was greater load on the medial part of heel compared to lateral part. For pressure distribution, runners with cushioning shoes showed lower, especially on the medial heel.

Plantar-Pressure Distributions on Hallux Valgus Patients (엄지발가락외반증 환자의 발바닥압력분포)

  • Yang, G.T.;Kim, Y.H.;Park, Si-Bog;Lim, S.H.;Chang, Y.H.;Mun, M.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.241-244
    • /
    • 1997
  • 23 hallux valgus patients were evaluated with clinical examinations and plantar pressure distribution measurements. A masking method for detailed plantar pressure distribution analyses was suggested. With higher grade of hallux valgus, pressure, contact length & area, and impulse on metartasus were significantly increased. Localized pressure concentration is very important in foot diseases and appropriate plantar pressure distributions should be considered on any shoe design.

  • PDF

A study of foot pressure measurement using multi-pressure sensor (다중압력센서를 이용한 족저압 측정에 관한 연구)

  • Choi, Dae-Yeong;Hong, Ju-Hee;Kim, Kyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1413-1414
    • /
    • 2015
  • 본 연구에서는 다중압력센서를 이용하여 발바닥에 가해지는 압력을 이용하여 보행패턴 추정에 관한 기초연구를 진행하였다. 실험은 압력센서가 3개일 때와 4개일 때 두 번에 걸쳐서 실험을 진행하였다. 이때 압력센서는 flexible하며 0~5V에서 구동하는 압력센서를 사용하였으며 발 특정부위에서 측정된 압력값들을 MCU를 이용하여 처리하였으며, 처리된 데이터를 컴퓨터에서 확인이 가능하도록 하였다.

  • PDF

A Study of Human Gait Discrimination Using Multi-pressure Sensor (다중압력센서를 이용한 보행패턴 추정에 관한 연구)

  • Choi, Dae-Yeong;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.673-677
    • /
    • 2016
  • In this study, In order to measure foot pressure, it makes analyzing device using multi-pressure sensor. This device was limited frequency band to 5Hz by using low-pass filter and MCU was detected signal every milliseconds. After wearing the device, the result was confirmed by blue-tooth to measure wirelessly. Also, we propose an algorithm to obtain the walking pattern using a time table in each of the detected peak from the pressure sensor. Using the algorithm, right walking pattern and abnormal pattern was detected. The results can be reflected more individual walking patterns than when using a conventional methods and also, developed device was no restriction on the human activity.

The Development and Verification of Balance Insole for Improving the Muscle Imbalance of Left and Right Leg Using based Sound Feedback (청각 피드백이 적용된 좌우 불균형 개선을 위한 밸런스 인솔 개발 및 검증)

  • Kang, Seung-Rok;Yoon, Young-Hwan;Yu, Chang-Ho;Nah, Jae-Wook;Hong, Chul-Un;Kwon, Tae-Kyu
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.115-124
    • /
    • 2017
  • This study was to develop the balance insole system for detecting and improving the muscle imbalance of left and right side in lower limbs. We were to verify the validation of balance insole system by analyzing the strategy of muscular activities and foot pressure according to sound feedback. We developed the balance insole based FSR sensor modules for estimating the muscle imbalance using detecting foot pressure. The insole system was FPCB have 8-spot FSR sensor with sensitivity range of 64-level. The participants were twenty peoples who have muscle strength differences in left and right legs over 20%. We measured the muscular activity and foot pressure of left and right side of lower limbs in various gait environment for verifying the improvement effect of muscle imbalance according to sound feedback. They performed gait in slope at 0, 5, 10, 15% and velocity at 3, 4, 5km/h. The result showed that the level of muscle imbalance reduced within 30% for sound feedback of balance insole system contrast to high level of muscle imbalance at 169.9~246.8% during normal gait for increasing slope and velocity. This study found the validation of balance insole system with sound feedback stimulus. Also, we thought that it is necessary to research on the sensitivity of foot area, detection of muscle imbalance and processing algorithm of correction threshold spot.